
BLED112 
DATA SHEET 

Friday, 04 April 2014 

Version 1.1 



 

 

Bluegiga Technologies Oy 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © 2000-2014 Bluegiga Technologies 

All rights reserved.  

Bluegiga Technologies assumes no responsibility for any errors which may appear in this manual.  
Furthermore, Bluegiga Technologies reserves the right to alter the hardware, software, and/or specifications 
detailed here at any time without notice and does not make any commitment to update the information 
contained here. Bluegiga’s products are not authorized for use as critical components in life support devices 
or systems. 

The WRAP is a registered trademark of Bluegiga Technologies 

The Bluetooth trademark is owned by the Bluetooth SIG Inc., USA and is licensed to Bluegiga Technologies. 
All other trademarks listed herein are owned by their respective owners. 



 

 

Bluegiga Technologies Oy 

VERSION HISTORY 

Version Comment 

1.0 First version 

1.1 Current consumption added 



 

 

Bluegiga Technologies Oy 

TABLE OF CONTENTS 

1 BLED112 Product Numbering .......................................................................................................................6 

2 Electrical Characteristics ...............................................................................................................................7 

2.1 Absolute Maximum Ratings ...................................................................................................................7 

2.2 Recommended Operating Conditions ....................................................................................................7 

2.3 Current Consumption .............................................................................................................................7 

3 Block Diagram ...............................................................................................................................................8 

4 Certifications ..................................................................................................................................................9 

4.1 Bluetooth ................................................................................................................................................9 

4.2 FCC and IC ............................................................................................................................................9 

4.3 Industry Canada .................................................................................................................................. 10 

4.4 CE ....................................................................................................................................................... 11 

4.5 South-Korea ........................................................................................................................................ 11 

4.6 Japan ................................................................................................................................................... 11 

4.7 Brazil ................................................................................................................................................... 11 

5 Contact Information .................................................................................................................................... 12 



 

 

Bluegiga Technologies Oy 

 

BLED112 Bluetooth® Smart USB Dongle 

 

DESCRIPTION 

BLED112 Bluetooth Smart Dongle 
integrates all Bluetooth Smart features. The 
USB dongle can a virtual COM port that 
enables simple host application 
development using a simple application 
programming interface. The BLED112 can 
be used for Bluetooth Smart development. 
With two BLED112 dongles you can quickly 
prototype new Bluetooth Smart application 
profiles by utilizing Bluegiga Profile 
Toolkit

TM
  and also automate in module 

software functions with Bluegiga 
BGScript

TM
 . 

  

 

Figure 1: BLED112 Bluetooth Smart USB 
dongle 

 

KEY FEATURES: 

 Bluetooth v.4.0, single mode compliant 

o Supports master and slave modes 

o Supports up to eight connections 

 Integrated Bluetooth Smart stack 

o GAP, GATT, L2CAP and SMP 

o Bluetooth Smart profiles 

 Radio performance 

o Transmit power : +0 dBm to -27 
dBm 

o Receiver sensitivity: -91 dBm 

 Host interfaces 

o USB (virtual COM port 
emualation) 

 Programmable 8051 processor for stand-
alone operation 

 Simple Bluegiga BGScript
TM

  scripting 
language for quick application 
development 

 Bluegiga Profile Toolkit
TM

  allowing the 
quick development of GATT based profiles 

 Free Software Development Kit 

 Bluetooth, CE, FCC, IC and South-Korea 
and Japan qualified 

 

 



 

 

Bluegiga Technologies Oy 

Page 6 of 12 

1 BLED112 Product Numbering 

 

Available products and product codes 

Product code Description 

BLED112 BLED112 USB dongle 

 



 

 

Bluegiga Technologies Oy 

Page 7 of 12 

2 Electrical Characteristics 

2.1 Absolute Maximum Ratings  

Note: These are absolute maximum ratings beyond which the module can be permanently damaged. These are not 
maximum operating conditions. The maximum recommended operating conditions are in the table 6.  

Rating Min Max Unit 

Storage Temperature -40 +85 °C 

VBUS -0.3 6.5 V 

Table 1: Absolute Maximum Ratings 

2.2 Recommended Operating Conditions 

Rating Min Max Unit 

Operationg Temperature Range -40 +85 °C 

VBUS 3.6 5.5 V 

Table 2: Recommended Operating Conditions 

2.3 Current Consumption 

Rating  AVG Peak Unit 

Idle 12.1  mA 

Scan  44 mA 

Advertising 
TX  44 mA 

RX  33 mA 

Table 3: Current Consumption 

 



 

 

Bluegiga Technologies Oy 

Page 8 of 12 

3 Block Diagram 

BLED112 is based on TI’s CC2540 chip. Embedded 32 MHz and 32.678 kHz crystals are used for clock 
generation.. 

I/O
 co

n
tro

ller

CC2540

I/O

32 MHz 
XTAL

32.768 
kHz XTAL

Clock

Debug interface

8051 CPU core and memory arbitrator

Voltage regulator

SRAM

Flash

Analog comparator

OPAMP

ADC

IRQ  controller DMA

USB

USART 0

USART 1

TIMER 1

TIMER 2

TIMER 3

TIMER 4

Radio arbiter
Radio registers

Link layer engine
SRAM

ModulatorDemodulator Synth

Receive Transmit
Frequency 

synthetisizer

Balun + 
LPF

Ant

Reset

Power-on reset

2V – 3.6V Reset

 

Figure 2: Simplified block diagram of BLE112 

CPU and Memory 

The 8051 CPU core is a single-cycle 8051-compatible core. It has three different memory access buses (SFR, 
DATA, and CODE/XDATA), a debug interface, and an 18-input extended interrupt unit. 

The memory arbiter is at the heart of the system, as it connects the CPU and DMA controller with the physical 
memories and all peripherals through the SFR bus. The memory arbiter has four memory-access points, 
access of which can map to one of three physical memories: an SRAM, flash memory, and XREG/SFR 
registers. It is responsible for performing arbitration and sequencing between simultaneous memory accesses 
to the same physical memory. 

The SFR bus is a common bus that connects all hardware peripherals to the memory arbiter. The SFR bus 
also provides access to the radio registers in the radio register bank, even though these are indeed mapped 
into XDATA memory space. 

The 8-KB SRAM maps to the DATA memory space and to parts of the XDATA memory spaces. The SRAM is 
an ultralow-power SRAM that retains its contents even when the digital part is powered off (power modes 2 
and 3). 

The 128KB flash block provides in-circuit programmable non-volatile program memory for the device, and 
maps into the CODE and XDATA memory spaces. 



 

 

Bluegiga Technologies Oy 

Page 9 of 12 

4 Certifications 

4.1 Bluetooth 

BLED112 Bluetooth low energy module is Bluetooth qualified and listed as an End Product. 

4.2  FCC and IC 

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to 
Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful 
interference in a residential installation. 

This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in 
accordance with the instructions, may cause harmful interference to radio communications. However, there is 
no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful 
interference to radio or television reception, which can be determined by turning the equipment off and on, the 
user is encouraged to try to correct the interference by one of the following measures: 

 

 Reorient or relocate the receiving antenna 

 Increase the separation between the equipment and receiver 

 Connect the equipment into an outlet on a circuit different from that to which the receiver is connected 

 Consult the dealer or an experienced radio/TV technician for help 

 

FCC Caution : To assure continued compliance, any changes or modifications not expressly approved by 

the party responsible for compliance could void the user's authority to operate this equipment. (Example - use 
only shielded interface cables when connecting to computer or peripheral devices). 

 

FCC Radiation Exposure Statement 

This equipment complies with FCC RF radiation exposure limits set forth for an uncontrolled environment.  
This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: 

(1) This device may not cause harmful interference, and  

(2) This device must accept any interference received, including interference that may cause undesired 
operation. 



 

 

Bluegiga Technologies Oy 

Page 10 of 12 

4.3 Industry Canada 

IC Statements: 

This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the 
following two conditions: (1) this device may not cause interference, and (2) this device must accept any 
interference, including interference that may cause undesired operation of the device. 

Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and 
maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio 
interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically 
radiated power (e.i.r.p.) is not more than that necessary for successful communication. 

 

Déclaration d’IC : 

Ce dispositif est conforme aux normes RSS exemptes de licence d’Industrie Canada. Son fonctionnement est 
assujetti aux deux conditions suivantes : (1) ce dispositif ne doit pas provoquer de perturbation et (2) ce 
dispositif doit accepter toute perturbation, y compris les perturbations qui peuvent entraîner un fonctionnement 
non désiré du dispositif. 

Selon les réglementations d’Industrie Canada, cet émetteur radio ne doit fonctionner qu’avec une antenne 
d’une typologie spécifique et d’un gain maximum (ou inférieur) approuvé pour l’émetteur par Industrie 
Canada. Pour réduire les éventuelles perturbations radioélectriques nuisibles à d’autres utilisateurs, le type 
d’antenne et son gain doivent être choisis de manière à ce que la puissance isotrope rayonnée équivalente 
(P.I.R.E.) n’excède pas les valeurs nécessaires pour obtenir une communication convenable. 

 

 



 

 

Bluegiga Technologies Oy 

Page 11 of 12 

4.4 CE 

BLED112 is in conformity with the essential requirements and other relevant requirements of the R&TTE 
Directive (1999/5/EC). The product is conformity with the following standards and/or normative documents. 

 EMC EN 301 489-17 V.1.3.3 in accordance with EN 301 489-1 V1.8.1 

 Radiated emissions EN 300 328 V1.7.1 

 Safety EN 60950-1 

 

4.5 South-Korea 

BLED112 is certified in South-Korea with certification number: KCC-CRM-BGT-BLED112 

4.6 Japan 

BLED112 has MIC Japan type certification with certification number: 003WWA111471  

4.7 Brazil 

 

 

 

 



 

 

Bluegiga Technologies Oy 

Page 12 of 12 

5 Contact Information 

Sales:  sales@bluegiga.com 

 

Technical support: support@bluegiga.com 

http://techforum.bluegiga.com 

 

Orders:  orders@bluegiga.com 

 

WWW:  www.bluegiga.com 

  www.bluegiga.hk 

Head Office / Finland: 

Phone: +358-9-4355 060 

Fax: +358-9-4355 0660 

Sinikalliontie 5A 

02630 ESPOO 

FINLAND 

Postal address / Finland: 

P.O. BOX 120 

02631 ESPOO 

FINLAND 

Sales Office / USA: 

Phone: +1 770 291 2181  

Fax: +1 770 291 2183 

Bluegiga Technologies, Inc. 

3235 Satellite Boulevard, Building 400, Suite 300 

Duluth, GA, 30096, USA 

Sales Office / Hong-Kong:  

Phone: +852 3972 2186  

Bluegiga Technologies Ltd.  

Unit 10-18  

32/F, Tower 1, Millennium City 1  

388 Kwun Tong Road  

Kwun Tong, Kowloon  

Hong Kong 

 

mailto:sales@bluegiga.com
mailto:support@bluegiga.com
http://techforum.bluegiga.com/
mailto:orders@bluegiga.com
http://www.bluegiga.com/
http://www.bluegiga.hk/


    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BLUETOOTH SMART SDK 

Developing your 1st Bluetooth Smart Application 

Thursday, 26 September 2013 

Version 2.0 

 



 

 

Bluegiga Technologies Oy 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © 2000-2013 Bluegiga Technologies 

All rights reserved.  

Bluegiga Technologies assumes no responsibility for any errors which may appear in this manual.  
Furthermore, Bluegiga Technologies reserves the right to alter the hardware, software, and/or specifications 
detailed here at any time without notice and does not make any commitment to update the information 
contained here. Bluegiga products are not authorized for use as critical components in life support devices or 
systems. 

The WRAP, Bluegiga Access Server, Access Point and iWRAP are registered trademarks of Bluegiga 
Technologies.  

The Bluetooth trademark is owned by the Bluetooth SIG Inc., USA and is licensed to Bluegiga Technologies. 
All other trademarks listed herein are owned by their respective owners. 



 

 

Bluegiga Technologies Oy 

VERSION HISTORY 

Version Comment 

1.0 First version 

1.1 Project and Hardware configuration added 

1.2 BGScript and firmware update instructions added 

1.3 Better screen captures and BLEGUI example added 

1.4 Bluetooth LE description updated 

1.6 Minor updates 

1.7 Updated compile and installation instructions 

1.8 Chapter 3 updated 

1.9 Chapter 4 updated 

2.0 Minor changes 



 

 

Bluegiga Technologies Oy 

TABLE OF CONTENTS 

1 Introduction ....................................................................................................................................................5 

2 What is Bluetooth low energy Technology? ..................................................................................................6 

3 Typical Bluetooth 4.0 Application Architecture ..............................................................................................7 

3.1 Overview ...............................................................................................................................................7 

3.2 What is a Profile? ..................................................................................................................................8 

3.3 What Is a Service? ................................................................................................................................9 

3.4 What is a Characteristic? ................................................................................................................... 10 

3.5 Relationship Between Profiles, Services and Characteristics ........................................................... 11 

4 Introduction to the Bluegiga Bluetooth Smart Software ............................................................................. 12 

4.1 The Bluetooth Smart Stack ................................................................................................................ 12 

4.2 The Bluetooth Smart SDK ................................................................................................................. 12 

4.3 The BGAPI Protocol .......................................................................................................................... 14 

4.4 The BGLib Host Library ..................................................................................................................... 15 

4.5 BGScript
TM

 Scripting Language ......................................................................................................... 16 

4.6 The Profile Toolkit .............................................................................................................................. 17 

5 Implementation of “BGDemo” Sensor ........................................................................................................ 18 

5.1 Installing the Tools ............................................................................................................................. 19 

5.2 Creating a Project .............................................................................................................................. 20 

5.3 Hardware Configuration ..................................................................................................................... 21 

5.4 Building a GATT Database with Profile Toolkit .................................................................................. 22 

5.4.1 Generic Access Profile Service ..................................................................................................... 22 

5.4.2 Device ID ....................................................................................................................................... 24 

5.4.3 A Manufacturer Specific Service.................................................................................................... 25 

5.5 Writing BGScript Code ....................................................................................................................... 26 

5.6 Compiling and Installing the Firmware .............................................................................................. 28 

5.6.1 Using BLE Update tool .................................................................................................................. 28 

5.6.2 Compiling Using bgbuild.exe ......................................................................................................... 30 

5.6.3 Installing the firmware with TI’s Flash Tool .................................................................................... 31 

6 Testing the BGDemo Sensor ..................................................................................................................... 32 

6.1 Using BLEGUI ................................................................................................................................... 32 

6.1.1 Discovering the BGDemo Sensor .................................................................................................. 32 

6.1.2 Establishing a Connection ............................................................................................................. 33 

6.1.3 Making GATT Service Discovery ................................................................................................... 34 

6.1.4 Reading the Serial Number String ................................................................................................. 35 

6.2 Reading and Writing the Manufacturer Specific Service ................................................................... 37 

7 Contact Information ...................................................................................... Error! Bookmark not defined. 



 

 

Bluegiga Technologies Oy 

Page 5 of 39 

1 Introduction 

This application note discusses how to start developing Bluetooth Smart applications using Bluegiga Bluetooth 
Smart modules and BLED112 Bluetooth Smart USB dongle. The application note contains a practical example 
of how to build Bluetooth Smart GATT based services with the profile toolkit, how to make a standalone 
sensor device using BGScript programming language. 

 



 

 

Bluegiga Technologies Oy 

Page 6 of 39 

2 What is Bluetooth low energy Technology? 

Bluetooth low energy (Bluetooth 4.0) is a new, open standard developed by the Bluetooth SIG. It’s targeted to 
address the needs of new modern wireless applications such as ultra-low power consumption, fast connection 
times, reliability and security. Bluetooth low energy consumes 10-20 times less power and is able to transmit 
data 50 times quicker than classical Bluetooth solutions. 

Link: How Bluetooth low energy technology works? 

Bluetooth low energy is designed for new emerging applications and markets, but it still embraces the very 
same benefits we already know from the classical, well established Bluetooth technology: 

 Robustness and reliability - The adaptive frequency hopping technology used by Bluetooth low 
energy allows the device to quickly hop within a wide frequency band, not just to reduce interference 
but also to identify crowded frequencies and avoid them. On addition to broadcasting Bluetooth low 
energy also provides a reliable, connection oriented way of transmitting data. 

 Security - Data privacy and integrity is always a concern is wireless, mission critical applications. 
Therefore Bluetooth low energy technology is designed to incorporate high level of security including 
authentication, authorization, encryption and man-in-the-middle protection. 

 Interoperability - Bluetooth low energy technology is an open standard maintained and developed by 
the Bluetooth SIG. Strong qualification and interoperability testing processes are included in the 
development of technology so that wireless device manufacturers can enjoy the benefit of many 
solution providers and consumers can feel confident that equipment will communicate with other 
devices regardless of manufacturer. 

 Global availability - Based on the open, license free 2.4GHz frequency band, Bluetooth low energy 
technology can be used in world wide applications. 

 There are two types of Bluetooth 4.0 devices: 

 Bluetooth 4.0 single-mode devices that only support Bluetooth low energy and are optimized for 
low-power, low-cost and small size solutions.  

 Bluetooth 4.0 dual-mode devices that support Bluetooth low energy and 
classical Bluetooth technologies and are interoperable with all the previously Bluetooth specification 
versions. 

Key features of Bluetooth low energy wireless technology include: 

 Ultra-low peak, average and idle mode power consumption 

 Ability to run for years on standard, coin-cell batteries 

 Low cost 

 Multi-vendor interoperability 

 Enhanced range 

Bluetooth low energy is also meant for markets and applications, such as: 

 Automotive 

 Consumer electronics 

 Smart energy 

 Entertainment 

 Home automation 

 Security & proximity 

 Sports & fitness 

https://www.bluetooth.org/en-us/training-resources/technology
http://www.youtube.com/watch?v=KW-TKBBiFss
http://www.youtube.com/watch?v=9G19p4ec_vM
http://www.youtube.com/watch?v=xjm9YyV2yeM
http://www.youtube.com/watch?v=3bifVc_iC2Y
http://www.youtube.com/watch?v=Ei_L1Pu6YuI
http://www.youtube.com/watch?v=TUwedeshPJU
http://www.youtube.com/watch?v=uQuGvBci5CQ


 

 

Bluegiga Technologies Oy 

Page 7 of 39 

3 Typical Bluetooth 4.0 Application Architecture 

3.1 Overview 

Bluetooth low energy applications typically have the following architecture: 

 Server 

Service is the device that provides the information, so these are typically the sensor devices, like 
thermometers or heart rate sensors. The server exposes implements services and the services 
expose the data in characteristics. 

 Client 

Client is the device that collects the information for one or more sensors and typically either displays it 
to the user or passes it forward. The client devices typically do not implement any service, but just 
collect the information from the service provided by the server devices. Clients are typically devices 
like mobile phones, tablets and PCs. 

The figure below shows the relationship of these two roles.  

Client Server

Service 1

Servic e 2

Service n

 

Figure 1: Bluetooth low energy device roles 

 



 

 

Bluegiga Technologies Oy 

Page 8 of 39 

3.2 What is a Profile? 

Profiles are used to describe devices and the data they expose and also how these devices behave. The data 
is described by using services, which are explained later and a profile may implement single or multiple 
services depending on the profile specification. For example a Heart Rate Service specification mandates that 
the following services need to be implemented: 

 Heart Rate Service 

 Device Information Service 

Profile specifications might also define other requirements such as security, advertisement intervals and 
connection parameters.  

The purpose of profile specifications is to allow device and software vendors to build standardized 
interoperable devices and software. Standardized profiles have globally unique 16-bit UUID, so they can 
easily identify.   

Profiles are defined in profiles specifications, which are available at: 

https://developer.bluetooth.org/gatt/profiles/Pages/ProfilesHome.aspx 

https://developer.bluetooth.org/gatt/profiles/Pages/ProfilesHome.aspx


 

 

Bluegiga Technologies Oy 

Page 9 of 39 

3.3 What Is a Service? 

Services such as a Heart Rate service describes what kind of data a device exposes, how the data can be 
accessed and what the security requirements for that data are. The data is described using characteristics 
and a service may contain single or multiple characteristics and some characteristics might be optional where 
as some are mandatory. 

Two types of services exist: 

 Primary Service 

A primary service is a service that exposes primary usable functionality of this device. A primary service 
can be included by another service. 

 Secondary Service 

A secondary service is a service that is subservient to another secondary service or primary service. A 
secondary service is only relevant in the context of another service. 

Just like the profiles also the services are defined in service specifications and the Bluetooth SIG standardized 
services are available at:  

https://developer.bluetooth.org/gatt/services/Pages/ServicesHome.aspx 

Every service standardized by the Bluetooth SIG has a globally unique 16-bit UUID so just like the profiles 
also the services can be easily identified. 

However not every use case can be fulfilled by the standardized service and therefore the Bluetooth Smart 
specification enables device vendors to make proprietary service. The proprietary services are described just 
as the standardized services, but 128-bit UUIDs need to be used instead of use 16-bit UUIDs reserved for the 
standard services. 

https://developer.bluetooth.org/gatt/services/Pages/ServicesHome.aspx


 

 

Bluegiga Technologies Oy 

Page 10 of 39 

3.4 What is a Characteristic? 

Characteristics are used to expose the actual data. Characteristic is a value, with a known type (UINT8, 
UINT16, UTF-8 etc.), a known presentation format. Just like profiles and services also characteristics have 
unique UUID so they can be easily identified and the standardized characteristics use 16-bit UUIDs and 
vendor specific characteristics use 128-bit UUIDs. 

Characteristics consist of: 

 Characteristic Declaration describing the properties of characteristic value such as: 

 characteristic (UUID) 

 Access control (read, write, indicate etc.) 

 Characteristic value handle (unique handle within a single device) 

 Characteristic Value containing the value of a characteristic (for example temperature reading). 

 Characteristic Descriptor(s) which provide additional information about the characteristic (characteristic 
user description, characteristic client configuration, vendor specific information etc.). 

 

 

Figure 2: Characteristic structure 

 

Standardized characteristics are defined in Characteristic Specification and the standardized characteristics 
are available at:  

https://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicsHome.aspx 

https://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicsHome.aspx


 

 

Bluegiga Technologies Oy 

Page 11 of 39 

3.5 Relationship Between Profiles, Services and Characteristics 

The illustration below shows the relationship between profiles, services and characteristics. 

 

Health thermometer profile

GAP service
(UUID: 1800)

Health thermometer 
service

(UUID: 1809)

Device information 
service

(UUID:180A)

Health thermometer service
(UUID: 1809)

Temperature measurement
(UUID: 2A1C)
Mandatory

Temperature type
(UUID: 2A1D)

Optional

Intermediate temperature
(UUID: 2A1E)

Optional

Measurement interval
(UUID: 2A21)

Optional

Temperature measurement

Handle : 1
UUID: 2803 (declaration)

Data:
Data UUID: 2A1D

Data Handle: 2
Data Properties: Indicate

Handle : 2
UUID: 2A1C (attribute value)

Data:
Flags: <uint8>
Measurement value:<float>

Time stamp: <date_time>
Temperature type: <temperature_type>

Handle: 3
UUID: 2903

Client characteristics configuration
Properties: Read, write

 

Figure 3: Health thermometer profile 



 

 

Bluegiga Technologies Oy 

Page 12 of 39 

4 Introduction to the Bluegiga Bluetooth Smart Software 

The Bluegiga Bluetooth Smart Software enables developers to quickly and easily develop Bluetooth Smart 
applications without in-depth knowledge of the Bluetooth Smart technology. The Bluetooth Smart Software 
consist of two parts: 

 The Bluetooth Smart Stack 

 The Bluetooth Smart Software Development Kit (SDK) 

4.1 The Bluetooth Smart Stack 

The Bluetooth Smart stack is a fully Bluetooth 4.0 single mode compatible software stack implementing slave 
and master modes, all the protocol layers such as L2CAP, Attribute Protocol (ATT), Generic Attribute Profile 
(GATT), Generic Access Profile (GAP) and security and connection management.  

The Bluetooth Smart is meant for the Bluegiga Bluetooth Smart products such as BLE112, BLE113 and 
BLED112 and it runs on the embedded MCU used in these products so no host is needed. 

4.2 The Bluetooth Smart SDK 

The Bluetooth Smart SDK is a software development kit, which enables the device and software vendors to 
develop products on top of the Bluegiga’s Bluetooth Smart hardware and software. 

The Bluetooth Smart SDK supports multiple development models and the software developers can decide 
whether the application software runs on a separate host (a low power MCU) or whether they want to make 
fully standalone devices and execute their code on the MCU embedded in the Bluegiga Bluetooth Smart 
modules. The SDK also contains documentation, tools for compiling the firmware, installing it into the 
hardware and lot of example application speeding up the development process. 

Fully standalone applications can be developed using a simple scripting language called BGScript
TM

. Several 
profiles and examples are also offered as a part of the Bluetooth Smart Software in order to easily develop the 
Bluetooth Smart compatible end products. 

Bluegiga’s Bluetooth Smart Software provides a complete development framework for Bluetooth low energy 
application implementers.  



 

 

Bluegiga Technologies Oy 

Page 13 of 39 

 

Bluetooth 4.0 radio

HCI

Bluetooth Smart Ready ModuleBluetooth Smart Ready Module

Bluegiga BGAPITM

Attribute Protocol (ATT)

Generic Attribute Profile (GATT)

Security 
Manager (SM)

Bluegiga BGSCriptTM VM

BGScriptTM application

Bluegiga BGLibTM

(BGAPI parser)

Application

Optional hostOptional host

UART or USB

Generic 
Access Profile 

(GAP)

L2CAP

 

Figure 4: Bluetooth Smart Software 

The Bluetooth Smart Software architecture is illustrated and it consists of the following components 

 The Bluetooth Smart stack implementing the Bluetooth low energy protocol  

 BGAPI
TM 

APIs that enable the software developers to interface to the Bluetooth Smart Stack 

 BGScript
TM

 Virtual Machine (VM) and scripting language which enable application code to be 
developed and executed directly on the Bluetooth Smart hardware 

 BGLib
TM

 lightweight host library which implements the BGAPI binary protocol and parser and is target 
for applications where separate host processor is used to interface to the Bluetooth Smart modules 
over UART or USB. 

 Profile Toolkit
TM

 is a GATT based profile development tool that enables software developers quickly 
and easily to describe the Bluetooth Smart profiles, services and characteristics using simple XML 
templates   

Each of these components are described in more detail in the following chapters. 



 

 

Bluegiga Technologies Oy 

Page 14 of 39 

4.3 The BGAPI Protocol 

For applications where a separate host is used to implement the end user application, a transport protocol is 
needed between the host and the Bluetooth stack. The transport protocol is used to communicate with the 
Bluetooth stack as well to transmit and receive data packets. This protocol is called BGAPI and it's a 
lightweight binary based communication protocol designed specifically for ease of implementation within host 
devices with limited resources. 

The BGAPI protocol is a simple command, response and event based protocol and it can be used over UART 
SPI (at the moment not supported by the Bluetooth Smart hardware) or USB interfaces. 

 

 

Figure 5: BGAPI protocol 

 

The BGAPI provides access for example to the following layers in the Bluetooth Smart Stack: 

 Generic Access Profile - GAP allows the management of discoverability and connetability modes 
and open connections 

 Security manager - Provides access the Bluetooth low energy security functions 

 Attribute database - An class to access the local attribute database 

 Attribute client - Provides an interface to discover, read and write remote attributes 

 Connection - Provides an interface to manage Bluetooth low energy connections 

 Hardware - An interface to access the various hardware layers such as timers, ADC and other 
hardware interfaces 

 Persistent Store - User to access the parameters of the radio hardware and read/write data to non-
volatile memory 

 System - Various system functions, such as querying the hardware status or reset it 

 

 



 

 

Bluegiga Technologies Oy 

Page 15 of 39 

4.4 The BGLib Host Library 

For easy implementation of BGAPI protocol an ANSI C host library is available. The library is easily portable 
ANSI C code delivered within the Bluetooth Smart SDK. The purpose is to simplify the application 
development to various host environments.  

Bluetooth 4.0 radio

HCI

Bluetooth Smart Ready ModuleBluetooth Smart Ready Module

Bluegiga BGAPITM

Attribute Protocol (ATT)

Generic Attribute Profile (GATT)

Security 
Manager (SM)

Bluegiga BGSCriptTM VM

Bluegiga BGLibTM

(BGAPI parser)

Application

Optional hostOptional host

UART or USB

Generic 
Access Profile 

(GAP)

L2CAP

 

Figure 6: BGLib host library 



 

 

Bluegiga Technologies Oy 

Page 16 of 39 

4.5 BGScriptTM Scripting Language 

The Bluetooth Smart SDK Also allows the application developers to create fully standalone devices without a 
separate host MCU and run all the application code on the Bluegiga Bluetooth Smart Hardware. The 
Bluetooth Smart modules can run simple applications along the Bluetooth Smart stack and this provides a 
benefit when one needs to minimize the end product’s size, cost and current consumption. For developing 
standalone Bluetooth Smart applications the SDK includes the Script VM, compiler and other BGScript 
development tools. BGScript provides access to the same software and hardware interfaces as the BGAPI 
protocol and the BGScript code can be developed and compiled with free-of-charge tools provided by 
Bluegiga. 

Typical BGScript applications are only few tens to hundreds lines of code, so they are really quick and easy to 
develop and lots of readymade examples are provides with the SDK. 

Bluetooth 4.0 radio

HCI

Bluetooth Smart Ready ModuleBluetooth Smart Ready Module

Bluegiga BGAPITM

Attribute Protocol (ATT)

Generic Attribute Profile (GATT)

Security 
Manager (SM)

Bluegiga BGSCriptTM VM

BGScriptTM application

Generic 
Access Profile 

(GAP)

L2CAP

 

Figure 7: BGScript application model 

BGScript code example: 

# System Started 

event system_boot(major, minor, patch, build, ll_version, protocol_version,hw) 

 #Enable advertising mode 

 call gap_set_mode(gap_general_discoverable,gap_undirected_connectable) 

 #Enable bondable mode 

 call sm_set_bondable_mode(1) 

 #Start timer at 1 second interval (32768 = crystal frequency) 

 call hardware_set_soft_timer(32768) 

end 



 

 

Bluegiga Technologies Oy 

Page 17 of 39 

  

4.6 The Profile Toolkit 

The Bluetooth Smart profile toolkit a simple set of tools, which can used to describe GATT based Bluetooth 
Smart services and characteristics. The profile toolkit consists of a simple XML based description language 
and templates, which can be used to describe the devices GATT database. The profile toolkit also contains a 
compiler, which converts the XML to binary format and generates API to access the characteristic values. 

 

Figure 8: A profile toolkit example of GAP service 

  



 

 

Bluegiga Technologies Oy 

Page 18 of 39 

5 Implementation of “BGDemo” Sensor 

In this chapter we discuss an actual implementation of a standalone Bluetooth Smart sensor called 
“BGDemo”. The implementation consists of following steps: 

 

1. Installing the tools 

2. Setting up the project 

3. Defining hardware configuration 

4. Building a GATT based service database with profile toolkit 

5. Writing a simple BGScript that defines the sensors functionality 

6. Compiling the GATT data base and BGScript into a binary firmware 

7. Installing the firmware into BLE112 or BLED112 hardware 

8. Testing it out 



 

 

Bluegiga Technologies Oy 

Page 19 of 39 

5.1 Installing the Tools 

1. Download the latest install the Bluegiga Bluetooth Smart SDK from the Bluegiga web site  

2. Run the executable 

3. Follow the on-screen instructions and install the SDK to the desired directory 

4. Perform a Full Installation (BLE SDK and TI tools) 

 

 

Figure 9: Installing Bluegiga Bluetooth Smart SDK 



 

 

Bluegiga Technologies Oy 

Page 20 of 39 

5.2 Creating a Project 

The project is started by creating a project file. The file is a simple XML formatted document and defines all 
the other files the included in the project. An example of a complete project file is shown below: 

 

 

Figure 10: Project file 

 

 The project configuration is described within the <project> tags 

 <gatt> tag defines the .XML file containing the GATT data base  

 <hardware> tag defines the .XML file containing the hardware configuration 

 <script> tag defines the .BGS file containing the BGScript code. If the project does not contain a 
BGScript code, this tag can be simply left out. 

 <usb_main> tag defines the .XML file containing the USB descriptors description. If the project does 
not use USB interface, this tag can be simply left out. 

 <image> tag defines the output .HEX file containing the firmware image 

 <device type> tag defines if the project is meant for BLE112 or BLE113 hardware 

 <boot fw> tag defines which interface is enabled for DFU firmware upgrades 

 

The exact syntax and options of the project file can be found from the BLE112 and BLE113 Configuration 
Guide and the syntax is not fully described in this document. 

 

NOTE: 

For applications targeted for BLE112 module, the USB should be disabled as the USB interface will 
continually draw around 1mA of power. 

WARNING: 

If the firmware is to be installed into the BLED112 USB dongle the USB CDC configuration MUST BE included 
in the project file. If this is not included in the project file and the compiled firmware is installed into the 
BLED112 USB dongle, the USB interface will be disabled and the dongle stops from working. 

 



 

 

Bluegiga Technologies Oy 

Page 21 of 39 

5.3 Hardware Configuration 

Once the project is configured the next logical step is the hardware configuration of your Bluetooth Smart 
module. In this document we use the BLE113 Bluetooth Smart Module as a target platform.  

If the default project template is used, the file where the hardware configuration remains is called 
hardware.xml.  

An example of a hardware configuration used in BGDemo application is shown below. 

 

 

 

Figure 11: Hardware configuration for the BLE113 Bluetooth Smart Module 

 

 The hardware configuration is described within the <hardware> tags 

 <sleeposc> tag defines whether the sleep oscillator is enabled or not. The Sleep oscillator allows low 
power sleep modes to be used. The BLE113 does incorporate the sleep oscillator so this value should 
be set to true especially in the applications where power consumption matters. The PPM value 
defines the sleep oscillator accuracy and MUST not be changed. 

 <usb> tag defines if USB is to be enabled or not. The BLE113 (unlike BLE112 or BLED112) does not 
have USB interface so we leave the setting to false. 

 <txpower> tag defines the TX power level and the value 15 configures the maximum TX power level. 

 <script enable> tag defines if BGScript VM and application are present. Since our example uses a 
BGscript application we set this value to true. 

 <slow clock> tag enabled the slow the MCU clock when there is radio activity and reduces the peak 
power consumption. The option is enabled by setting the value to true. 

 <pmux regulator_pin> configuration defines which GPIO pin is used to control an external DC/DC 
converter. An external DC/DC converter can be used to lower the peak power consumption during 
radio activity and the Bluetooth Smart software will automatically enable or disable the DC/DC based 
on the software status. The DKBLE112 and DKBLE113 development kits have the DC/DC converter, 
so this feature is enabled. 

NOTE: 

 Enabling the <slow clock> feature will corrupt high speed UART transmissions, so if UART is used in 
your application this feature MUST NOT be enabled. 

: 

 



 

 

Bluegiga Technologies Oy 

Page 22 of 39 

5.4 Building a GATT Database with Profile Toolkit 

This section discusses the implementation of a GATT database so the services and characteristics exposed 
by a device. The service database is created with the Profile Toolkit

TM
 tools, which simply is are just XML 

based description language and templates.  

5.4.1 Generic Access Profile Service 

Every Bluetooth Smart device needs to implement a GAP service. The GAP service is very simple and 
consists of only two characteristics. An example implementation of GAP service is show below. 

 

Figure 12: GAP service 

 

5.4.1.1 Service Description 

A Bluetooth Smart service is described within the <service> tags. For every service you need to define a UUID 
as shown in the example above.  

For the GAP service the globally unique 16-bit UUID is : 1800 

In the example above we also use optional <description> tag is used to identify the service name. This is 
optional tag and can be considered to be a comment in the XML file and is not used in the actual device. 

The Bluetooth SIG standardized services and UUIDs are available at:  

https://developer.bluetooth.org/gatt/services/Pages/ServicesHome.aspx 

https://developer.bluetooth.org/gatt/services/Pages/ServicesHome.aspx


 

 

Bluegiga Technologies Oy 

Page 23 of 39 

5.4.1.2 Characteristics Description 

Characteristics belonging to a service are described within <characteristic”> tags and they must be inside the 
<service> tags of the service they belong to. 

A service may have one or more characteristics. The GAP service, used as an example, contains two 
characteristics, which are: 

 Device name (UUID: 2A00) 

This is a device’s user friendly name (similar to the friendly name used in Bluetooth classic) 

 Device appearance  (UUID: 2A01) 

This identifies the devices type (similar to the Class-of-Device used in Bluetooth classic) 

 

Characteristics also must have unique UUIDs and they need to be defined in the GATT database as shown 
above. 

Standardized characteristics are defined in Characteristic Specification and the standardized characteristics 
are available at:  

https://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicsHome.aspx 

 

Characteristics properties: 

Service characteristics are described using the <properties> tag. The properties define how the characteristic 
can be accessed by a remote device. In the GAP service both the values are defined read only. Now since the 
values are read only they can be marked as const meaning the values are constant and they will be stored on 
the flash memory during the firmware installation. 

 

Characteristics values: 

The characteristic’s value is defined within the <value and </value> tags. The device appearance is a hex 
value, so hex flag is used. 

 

The exact syntax and more examples of services and characteristics definitions can be found from the Profile 
Toolkit Developer Guide. 

https://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicsHome.aspx


 

 

Bluegiga Technologies Oy 

Page 24 of 39 

5.4.2 Device ID 

The second service implemented in our example is the Device ID service. The DI service exposes information 
about the vendor of the device and optional information for example about the devices firmware and hardware 
versions. In this example we implement a fairly minimalistic DI service with only a few characteristics. The DI 
service description is very similar to the GAP service and has only a few differences. The XML description is 
shown below. 

 

 

Figure 13: Device ID service 

 

The global UUID for the DI service is: 180A 

Link: Device ID Service 

 

Three characteristic are defined and they are Manufacturer Name String, Model Number String and Serial 
Number String. All of these characteristics have UTF-8 format and they are ready only values. The two first 
values we permanently store to the flash and mark them const, but the third value is unique to every device 
and later we want to be able to modify the value with our BGscript code. Therefore we do no mark it const and 
we also define and ID for the value xgatt_dis_2a35 which we later use in the BGScript code to write the 
devices Bluetooth address to the serial number string. 

Link:  Manufacturer Name String, Model Number String and Serial Number String 

https://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.device_information.xml
https://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicViewer.aspx?u=org.bluetooth.characteristic.manufacturer_name_string.xml
https://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicViewer.aspx?u=org.bluetooth.characteristic.model_number_string.xml
https://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicViewer.aspx?u=org.bluetooth.characteristic.serial_number_string.xml


 

 

Bluegiga Technologies Oy 

Page 25 of 39 

5.4.3 A Manufacturer Specific Service 

The third service used in this example is a manufacturer specific service. Bluetooth Smart devices can have 
services defined by manufacturers which are not standardized by the Bluetooth SIG. The service structure is 
exactly the same however, manufacturer specific services MUST use 128-bit long UUIDs instead of the 16-bit 
UUIDs reserved for the standardized services. 

The 128-bit UUIDs do not need to be applied or registered, but can be generated using for example online 
tools such as this site: http://www.uuidgenerator.net/ 

 

 

Figure 14: Proprietary service 

The example service above has one characteristic which can be either read or written. 

 

http://www.uuidgenerator.net/


 

 

Bluegiga Technologies Oy 

Page 26 of 39 

5.5 Writing BGScript Code 

This example implements a standalone sensor device without an external host processor. The sensor side 
application is created with BGScript scripting language and the code is shown below. 

BGScript uses an event based programming approach. The script is executed when an event takes place, and 
the programmer may register listeners for various events. 

Our example BGDemo application uses the following BGScript code. 

dim tmp(10) 

dim addr(6) 

 

# Boot Event listener 

event system_boot(major ,minor ,patch ,build ,ll_version ,protocol_version ,hw ) 

 

 #Read local BT address 

 call system_address_get( )(addr(0:6)) 

  

 # Write BT address to DI service serial number string 

 call attributes_write(xgatt_dis_2a25,0,6,addr(0:5)) 

 

 #set bondable mode 

 call sm_set_bondable_mode(1) 

  

 #set to advertising mode 

 call gap_set_mode(gap_general_discoverable,gap_undirected_connectable) 

end 

 

# Disconnection event listener 

event connection_disconnected(handle,result) 

 #connection disconnected, continue advertising 

 call gap_set_mode(gap_general_discoverable,gap_undirected_connectable) 

end 

 



 

 

Bluegiga Technologies Oy 

Page 27 of 39 

The BGScript has two event listeners defined: 

 system_boot(…)  event listener 

When the system is started (power up) a boot event is generated and this event listener will catch it. 
This event is the entry point for all the BGScript applications. In the example above, when the system 
is started, the BGSCript code reads the local devices MAC (Bluetooth) address, stores it to the Device 
ID services serial number string, enables bonding mode in case the remote device wants to do pairing 
and finally starts the advertisement procedure so the device becomes visible and connectable to other 
devices. 

 connection_disconnected(…)event listener 

The second event handler is executed when a Bluetooth Smart connection is lost or closed by the 
remote device and it simply enables the advertisement mode again. 

 

The BGScript functions and events can be found from the Bluetooth Smart Software API reference document. 

 

 

 



 

 

Bluegiga Technologies Oy 

Page 28 of 39 

5.6 Compiling and Installing the Firmware 

5.6.1 Using BLE Update tool 

When you want to test your project, you need to compile the hardware settings, the GATT data base and 
BGScript code into a firmware binary file. The easiest way to do this is with the BLE Update tool that can be 
used to compile the project and install the firmware to a Bluetooth Smart Module using a CC debugger tools 

In order to compile and install the project: 

1. Connect CC debugger to the PC via USB 

2. Connect the CC debugger to the debug interface on the BLE112 or BLE113 

3. Press the button on CC debugger and make sure the led turns green 

4. Start BLE Update tool 

5. Make sure the CC debugger is shown in the Port drop down list 

6. Use Browse to locate your project file (for example BLE113-project.bgproj) 

7. Press Update 

BLE Update tool will compile the project and install it into the target device. 

 

 

Figure 15: Compile and install with BLE Update tool 

 

Note: 

You can also double clikc the .BGPROJ file and it will automatically open the BLE Update tool. 

 

If you have BLE113 Development Kit v.1.2 the CC debugger component is already placed on the kit and you 
simply need to: 

 Connect the DEBUGGER USB port to the PC 

 Turn the DEBUGGER switch to MODULE 

 Press the RESET DEBUGGER button and make sure the DEBUGGER led turns green 



 

 

Bluegiga Technologies Oy 

Page 29 of 39 

The View Build Log opens up a dialog that shows the bgbuild compilere output and the RAM and Flash 
memory allocations. 

 

 

Figure 16: BLE Update build log 



 

 

Bluegiga Technologies Oy 

Page 30 of 39 

5.6.2 Compiling Using bgbuild.exe 

The project can also be compiled with the bgbuild.exe command line compiler. The BGBuild compiler simply 
generates the firmware image file, which can be installed to the BLE112 or BLE113. 

In order to compile the project using BGBuild: 

1. Open Windows Command Prompt (cmd.exe) 

2. Navigate to the directory where your project is 

3. Execute BGbuild.exe compiler  

Syntax: bgbuild.exe <project file> 

 

Figure 17: Compiling with BGBuild.exe 

If the compilation is successful a .HEX file is generated, which can be installed into a Bluetooth Smart Module. 

On the other hand if the compilation fails due to syntax errors in the BGScript or GATT files, and error 
message is printed. 

 

 

 

 



 

 

Bluegiga Technologies Oy 

Page 31 of 39 

5.6.3 Installing the firmware with TI’s Flash Tool 

Texas Instruments flash tool can also be used to install the firmware into the target device using the CC 
debugger. 

In order to install the firmware with TI flash tool: 

1. Connect CC debugger to the PC via USB 

2. Connect the CC debugger to the debug interface on the BLE112 

3. Press the button on CC debugger and make sure the led turns green 

4. Start TI flash tool tool 

5. Select program CCxxxx SoC or MSP430 

6. Make sure the target device is recognized and displayed in the System-on-Chip field 

7. Make sure Retain IEEE address.. field is checked 

8. Select the .HEX file you want to program to the target device 

9. Select Erase, Program and Verify 

10. Finally press Perform actions and make sure the installation is successful 

 

Figure 18: TI’s flash programmer tool 
 

Note:  

TI Flash tool should NOT be used with the Bluegiga Bluetooth Smart SDK v.1.1 or newer, but BLE Update tool 
should be used instead. The BLE112 and BLED112 devices contain a security key, which is needed for the 
firmware to operate and if the device is programmed with TI flash tool, this security key will be erased. 

 



 

 

Bluegiga Technologies Oy 

Page 32 of 39 

6 Testing the BGDemo Sensor 

6.1 Using BLEGUI 

This section describes how to test the BGDemo sensor implementation using BLEGUI software. 

BLEGUI is a simple PC utility that can be used to control a Bluegiga Bluetooth Smart device over UART or 
USB. BLEGUI software sends the BGAPI commands to the device and parses the reponses and has a simple 
user interface to display device data. 

6.1.1 Discovering the BGDemo Sensor 

 Connect for example a BLED112 USB dongle to your PC 

 Make use the USB/CDC driver gets installed and a Virtual COM port gets created 

 Open BLEGUI software and attach the device in the virtual COM port to the BLEGUI 

 

As soon as the BGDemo sensor is powered on it starts to advertise. A BLED112 USB dongle can for example 
be used to scan for the sensor. 

 Enable Active Scanning 

 Press Set Scan Parameters 

 Select Generic scan mode 

 Press Scan 

If the BGDemo device is power on and the BGDemo application is installed to is you should see the device in 
the BLEGUI software. 

 

Figure 19: Discoverting the BGDemo device 



 

 

Bluegiga Technologies Oy 

Page 33 of 39 

6.1.2 Establishing a Connection 

Simply select the BGDemo sensor device and press the Connect button in the BLEGUI application. 

 

Figure 20: Opening a connection 



 

 

Bluegiga Technologies Oy 

Page 34 of 39 

6.1.3 Making GATT Service Discovery 

In order to see the supplied services in the BGDemo device do the following steps 

 Press the GATT button to start GATT tool 

 Press Service discover button to start a GATT primary service discovery procedure 

 

Figure 21: GATT service  discovery 

The three services defined in the GATT data base are visible in the device. 



 

 

Bluegiga Technologies Oy 

Page 35 of 39 

6.1.4 Reading the Serial Number String 

 To read the DI service’s serial number string, which contains the MAC address, do the following 
steps: 

o  Select the Device ID service (UUID: 180A)  

o Make Descriptors discovery 

 

Figure 22: GATT descriptor discovery 

The Serial Number String is stored in the UUID a2a5 as defined in the GATT database. The value is read only 
and to read it: 

 Select the Serial Number String characteristic 

 Press Read 



 

 

Bluegiga Technologies Oy 

Page 36 of 39 

 

Figure 23: Reading Serial Number String 

 

The MAC address is displayed in the Raw column. 

  

 



 

 

Bluegiga Technologies Oy 

Page 37 of 39 

6.2 Reading and Writing the Manufacturer Specific Service 

In order to write and read the value of our proprietary characteristic 

 Connect to the BGDemo sensor 

 Make GATT service discovery 

 Select the proprietary service and make descriptor discovery 

 Press Read in order to read the value: 

o Note that the value does not contain any real data by default, since it was not marked as const 
but zero’s are returned 

 To write the value: 

o Select the proprietary characteristic 

o Write the desired value to the line below the GATT view (c0ffee) 

o Press Write 

 

Figure 24: Writing a characteristic value 



 

 

Bluegiga Technologies Oy 

Page 38 of 39 

 

 To make sure the value got written, simply read it again. 

 

Note: 

If you reset the BGDemo sensor the value written to the proprietary characteristic will be lost, since the 
example BGScript code will not store the value to the flash memory. 

If you want to store the value permanently use for example the PS key API commands to write the value to the 
PS key storage in your BGScript code. 

Disconnecting from the device will keep the characteristic value, since as long as the software runs, the value 
will be kept in RAM. 

 

 



 

 

Bluegiga Technologies Oy 

Page 39 of 39 

7 Contact information 

Sales:  sales@bluegiga.com 

 

Technical support: www.bluegiga.com/support/ 

 

Orders:  orders@bluegiga.com 

 

WWW:  www.bluegiga.com 

  www.bluegiga.hk 

Head Office / Finland: 

Phone: +358-9-4355 060 

Fax: +358-9-4355 0660 

Sinikalliontie 5A 

02630 ESPOO 

FINLAND 

Postal address / Finland: 

P.O. BOX 120 

02631 ESPOO 

FINLAND 

Sales Office / USA: 

Phone: +1 770 291 2181  

Fax: +1 770 291 2183 

Bluegiga Technologies, Inc. 

3235 Satellite Boulevard, Building 400, Suite 300 

Duluth, GA, 30096, USA 

Sales Office / Hong-Kong:  

Phone: +852 3972 2186  

Bluegiga Technologies Ltd.  

Unit 10-18  

32/F, Tower 1, Millennium City 1  

388 Kwun Tong Road  

Kwun Tong, Kowloon  

Hong Kong 

mailto:sales@bluegiga.com
http://www.bluegiga.com/support/
mailto:orders@bluegiga.com
http://www.bluegiga.com/
http://www.bluegiga.hk/


    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BLUETOOTH SMART MODULE

CONFIGURATION GUIDE

Tuesday, 2 September 2014

Version 3.6



Copyright © 2001-2014 Bluegiga Technologies Page  of 2 36

Copyright © 2001 - 2014 Bluegiga Technologies

Bluegiga Technologies reserves the right to alter the hardware, software, and/or specifications detailed herein at
any time without notice, and does not make any commitment to update the information contained herein.
Bluegiga Technologies assumes no responsibility for any errors which may appear in this manual. Bluegiga
Technologies' products are not authorized for use as critical components in life support devices or systems.

Bluegiga Access Server, Access Point, APx4, AX4, BSM, iWRAP, BGScript and WRAP THOR are trademarks
of Bluegiga Technologies.

The  trademark and logo are registered trademarks and are owned by the Bluetooth SIG, Inc.Bluetooth

ARM and ARM9 are trademarks of ARM Ltd.

Linux is a trademark of Linus Torvalds.

All other trademarks listed herein belong to their respective owners.



Copyright © 2001-2014 Bluegiga Technologies Page  of 3 36

Table of Contents

1 Version History  ________________________________________________________________________ 4
2 Introduction  ___________________________________________________________________________ 5
3 Project Configuration File  ________________________________________________________________ 6

3.1 <device>  _________________________________________________________________________ 6
3.2 <gatt>  ___________________________________________________________________________ 6
3.3 <hardware>  _______________________________________________________________________ 8
3.4 <config> __________________________________________________________________________ 8
3.5 <script>  __________________________________________________________________________ 8
3.6 <usb_main> _______________________________________________________________________ 8
3.7 <image>  _________________________________________________________________________ 9
3.8 <ota>  ____________________________________________________________________________ 9
3.9 <boot>  __________________________________________________________________________ 10
3.10 Examples ________________________________________________________________________ 11

4 Hardware Configuration File (hardware.xml)  _________________________________________________ 12
4.1 <sleeposc>  ______________________________________________________________________ 12
4.2 <script>  _________________________________________________________________________ 13
4.3 <slow_clock> _____________________________________________________________________ 13
4.4 <lock_debug>  ____________________________________________________________________ 14
4.5 <sleep>  _________________________________________________________________________ 14
4.6 <wakeup_pin>  ____________________________________________________________________ 16
4.7 <host_wakeup_pin>  _______________________________________________________________ 18
4.8 <txpower>  _______________________________________________________________________ 19
4.9 <pmux>  _________________________________________________________________________ 20
4.10 <port>  __________________________________________________________________________ 21
4.11 <usb>  __________________________________________________________________________ 22
4.12 <usart>  _________________________________________________________________________ 23
4.13 <timer_ticks>  _____________________________________________________________________ 26
4.14 <timer>  _________________________________________________________________________ 27
4.15 <otaboot>  _______________________________________________________________________ 29
4.16 Endpoints  _______________________________________________________________________ 30
4.17 Examples ________________________________________________________________________ 30

5 Application Configuration File (config.xml)  __________________________________________________ 31
5.1 <connections>  ____________________________________________________________________ 31
5.2 <defrag>  ________________________________________________________________________ 31
5.3 <manual_confirm> _________________________________________________________________ 32
5.4 <script_timeout>  __________________________________________________________________ 32
5.5 <throughput>  _____________________________________________________________________ 33
5.6 <passkey>  _______________________________________________________________________ 33
5.7 <user_data>  _____________________________________________________________________ 34
5.8 <dfu>  ___________________________________________________________________________ 34
5.9 Examples ________________________________________________________________________ 34



Copyright © 2001-2014 Bluegiga Technologies Page  of 4 36

1 Version History

Version Comments

3.0 This document is separated from the Profile Toolkit Developer Guide document.

Compatibility changes for the Bluetooth Smart Software v.1.2 added:

Added BLE113 reference for <txpower> in hardware.xml
Added fixed passkey documentation to config.xml
Bootloader definition added for OTA update.
USB interface is disabled by default
Default maximum power mode defined to be 3
Wake up pin functionality added
Defrag tag added for running the defragmentation automatically in the boot-up.

In addition, editorial improvements done within the document.

3.1 Improved examples and configuration option descriptions.

3.2 Compatibility changes for the Bluetooth Smart Software v.1.2.2:

256kB variant configuration supported added for BLE113
Binary image and memory configurability added for OTA SW update under the <ota> and
<otaboot> tags

3.3 Improved examples

3.5 Compatibility changes for the Bluetooth Smart Software v.1.3.0:

Hardware configuration and TX power parts added for BLE121LR product variant
OTA firmware update instructions added to create an OTA file just containing the BGScript
and GATT portions

3.6 Compatibility changes for the Bluetooth Smart Software v.1.3.1:

<DFU> tag introduced for allowing that DFU boot-mode is not allowed.



Copyright © 2001-2014 Bluegiga Technologies Page  of 5 36

2 Introduction

The  Smart configuration guide instructs you how to how to create a project file for your application andBluetooth
how to configure your  Smart Modules hardware and application configuration settings.Bluetooth



Copyright © 2001-2014 Bluegiga Technologies Page  of 6 36

3 Project Configuration File

The project file (typically  is the file that describes all the components included inproject.bgproj or project.xml)
a Bluetooth Smart software and hardware project. Typically these files are name something like this:

hardware.xml - Hardware configuration file
gatt.xml - GATT database file
config.xml - Optional application configuration file
script.bgs - Optional BGScript application source code
cdc.xml - Optional USB descriptor file (not used with BLE113, BLE121LR)

The project file also defines other features of the project like the hardware version (BLE112, BLE113, and
BLE121LR), firmware output files and selected bootloader.

The project file itself is a simple XML file with only few tags on it, which are described below.

If the project file is named as  (or any other file with a  extension), then theproject.bgproj .bgproj
Bluegiga  application will automatically recognize it in the Windows Explorer interface andBLE Update
allow you to easily open, compile, and flash the project to a module using the CC debugger.

3.1 <device>

Hardware type configuration

XML tag Description

type This tag defines the type of your Smart ModuleBluetooth 

Options:

ble112: Use if you have BLE112 or BLED112

ble113: Use if you have BLE113

ble113-m256k: Use if you have BLE113-M256K

ble121lr-m256k: Use if you have BLE121LR longrange module

Default: ble112

Example: Defining device type BLE112

<device type="ble112" />

Example: Defining device type BLE113 (128kB flash variant)

<device type="ble113" />

Example: Defining device type BLE113 (256kB flash variant)

<device type="ble113-m256k" />

3.2 <gatt>

GATT database file



Copyright © 2001-2014 Bluegiga Technologies Page  of 7 36

XML tag Description

in This tag points to the XML file that contains the GATT database structure.

Example: Defining the GATT database file

<gatt in="gatt.xml" />



Copyright © 2001-2014 Bluegiga Technologies Page  of 8 36

3.3 <hardware>

Hardware configuration file

XML
tag

Description

in This tag points to the XML file which contains the hardware configuration for your Bluegiga Bluetooth
Smart device.

Example: Defining the hardware configuration file

<hardware in="hardware.xml" />

3.4 <config>

Application configuration file (optional)

XML
tag

Description

in This tag points to the XML file which contains the generic application configuration of your Bluegiga 
Smart device.Bluetooth 

Example: Defining the application configuration file

<config in="config.xml" />

3.5 <script>

BGScript application file (optional)

XML
tag

Description

in This tag points to the BGScript file that contains the BGScript source code for your standalone 
 Smart application.Bluetooth

If you use the BGAPI protocol and a separate host (which cannot be used simultaneously with
BGScript code), then this tag should be left out.

Example: Defining the BGScript file

<script in="script.bgs" />

3.6 <usb_main>

USB descriptor definition (optional)

XML
tag

Description

in This tag points to the XML file that contains the USB descriptor for BLED112 or BLE112 Bluetooth
Smart devices.
If USB interface is disabled in the hardware configuration, this tag is not needed.



Copyright © 2001-2014 Bluegiga Technologies Page  of 9 36

XML
tag

Description

Example: Defining the USB descriptor file

<usb_main in="cdc.xml" />

USB enumeration

The USB only descriptors which may be used the ones contained in the  file that is present incdc.xml
many of the example projects which come with the stack, providing USB CDC functionality (virtual
serial port). There is no support in the current BLE stack for other types of USB enumeration such as
USB HID or other protocols.

3.7 <image>

Firmware binary output file

XML
tag

Description

out This tag names the firmware output file for the compiler. The output file can be uploaded to the device
using the CC debugger or an available wired DFU method (USB or UART). The DFU option depends
on which bootloader is present in the firmware that is already on the module from a previous full CC
debug reflash, and the module must be specifically rebooted into DFU mode first. The BLEGUI utility
implements both of these methods (USB and UART) via the menu.Commands -> DFU 

Example: Defining the binary output file for the compiler

<image out="out.hex" />

3.8 <ota>

This optional tag is used to generate a firmware file that can be uploaded to the device using Over-the-Air (OTA)
update.

XML tag Description

out This tag names the OTA firmware output file from the compiler. The output file can be uploaded to
the device using an Over-the-Air (OTA) firmware update process/tool (such as BLEGUI).

firmware This tag defines if only the GATT and configuration portions are included in the OTA output file.

Note: The GATT and configuration portions must match with the SDK version against which they
will be updated.

Options:

true: Include Bluetooth Stack in the OTA update (firmware)

false: Do not Bluetooth Stack in the OTA update (firmware)

Default: True

Example: Defining a full OTA firmware update file

<ota out="out.ota" firmware="true" />



Copyright © 2001-2014 Bluegiga Technologies Page  of 10 36

XML tag Description

Example: Defining an OTA firmware update file containing just BGScript and GATT database

<ota out="out.ota" firmware="false" />

3.9 <boot>

Selects the bootloader interface used for In-the-Field or Over-the-Air firmware updates.

XML
tag

Description

fw This tag is used to describe the boot loader used in the firmware. The boot loader also devices which
interface is used for the on-the-field firmware updates.
Only one bootloader can be active in the device.

Options:

boot: Configures the bootloader for the USB interface. Use only with the BLE112 module or BLED112
dongle.

bootuart: Configures the bootloader for the UART interface.

bootota: Configures the bootloader for Over-the-Air (OTA) interface.

Default:

boot

Example: Enabling UART bootloader

<boot fw="bootuart" />

Example: Enabling USB boot loader

<boot fw="boot" />

Example: Enabling OTA boot loader

<boot fw="bootota" />



Copyright © 2001-2014 Bluegiga Technologies Page  of 11 36

3.10 Examples

Below is an example of a project file for BLE112 Bluetooth Smart Module or BLED112 USB dongle using USB
interface:

BLE112 Project

<?xml version="1.0" encoding="UTF-8" ?>
<project>
    <gatt in="gatt.xml" />
    <hardware in="hardware.xml" />    
    <usb_main in="cdc.xml" />
    <config in="config.xml" />
    <device type="ble112" />
    <boot fw="boot" />
    <image out="BLE112_usbcdc.hex" />
</project>

Below is an example of a project file for BLE113 Bluetooth Smart Module using UART interface for potential
DFU updates:

BLE113 Project

<?xml version="1.0" encoding="UTF-8" ?>
<project>
    <gatt in="gatt.xml" />
    <hardware in="hardware.xml" />    
    <config in="config.xml" />
    <device type="ble113" />
    <boot fw="bootuart" />
    <image out="BLE113.hex" />
</project>

Below is an example of a project file for BLE113 Bluetooth Smart Module running a BGScript application and
OTA bootloader:

BLE113 Project

<?xml version="1.0" encoding="UTF-8" ?>
<project>
    <gatt in="gatt.xml" />
    <hardware in="hardware.xml" />    
    <config in="config.xml" />
    <device type="ble113" />
    <boot fw="bootota" />
    <image out="BLE113.hex" />
</project>



Copyright © 2001-2014 Bluegiga Technologies Page  of 12 36

4 Hardware Configuration File (hardware.xml)

The hardware configuration file is used to configure the hardware features such as TX power, UART, SPI,
hardware timers, and GPIO settings of your Bluegiga  Smart device.Bluetooth

4.1 <sleeposc>

Sleep oscillator settings

Attribute Value - Description

enable This setting can be used to enable or disable the external sleep clock.

Options:

true: This enables the external 32.7680KHz sleep oscillator. This sleep oscillator allows the
BLE112, BLE113, or BLE121LR to enter power mode 1 or 2 whenever radio is not active,
transmitting or receiving, for example also during radio silence between connection intervals.

false: This disables the external 32.7680KHz sleep oscillator, so the TI's chipset internal
32.7530KHz RC oscillator is used for timings. Using this setting increases current consumption
because power modes 1 and 2 are prevented during any  activity (connection - scanningBluetooth
- advertising), due to limited accuracy of internal RC oscillator.

Default:

false

Note:

In BLE112, BLE113, and BLE121LR this options MUST be configured to enable the external sleep
oscillator, while in the BLED112 this option MUST be set to "false", since the USB dongle does not
contain the required external oscillator.

ppm This setting defines the sleep clock accuracy and .must always be 30

Options:

30

Note:

Do not modify!

Example : Configuration for BLE112, BLE113, BLE121LR  Smart Modules: Bluetooth

<sleeposc enable="true" ppm="30" />

Example : Configuration for BLED112 USB dongle:

<sleeposc enable="false" ppm="30" />



Copyright © 2001-2014 Bluegiga Technologies Page  of 13 36

4.2 <script>

BGScript settings

Attribute Value - Description

enable This setting can be used to enable or disable BGScript application execution.

Options:

true: BGScript application and VM are enabled.

false: BGScript application and VM are disabled and BGAPI should be used instead.

Default:

false

Example: Enable scripting 

<script enable="true" />

4.3 <slow_clock>

This setting can be used to slow the system clock from 32MHz to 250KHz when radio is active, in order to
reduce the peak power consumption. The average current consumption reduction between normal clock speed
and slow clock speed is approximately 5-6 mA.

Attribute Value - Description

enable Options:

true: System clock is slowed down.

false: System clock is not slowed down

Default:

false

Example: Enable slow clock

<slow_clock enable="true" />

UART and PWM interfaces use system clock for timings. If the system clock is allowed to slow down
(notice that it will happen only when radio is active) the peripheral interface timings become variable,
thus invalid. This feature must only be enabled when peripherals requiring stable clock are not used.

SPI Master sends clock signal with transmission which allows enabling the slow clock feature.



Copyright © 2001-2014 Bluegiga Technologies Page  of 14 36

4.4 <lock_debug>

This feature can be used to lock down the debug interface (CC debugger interface, P2_1/P2_2) on the BLE112,
BLE113, and BLE121LR  Smart Modules in order to protect application code and data. If this feature isBluetooth
enabled, then only a  of the firmware can be done with the CC debugger using the TI's Smart RF Flashfull erase
Programmer. Notice that Bluegiga's own re-flash tool would not be usable anymore, and for instance it would
become impossible to retrieve the serial number and license key of a module.

Attribute Value - Description

enable Options:

true: Debug interface is locked.

false: Debug interface is available.

Default:

false

Example: Lock debug interface

<lock_debug enable="true" />

4.5 <sleep>

This setting can be used to enable or disable sleep modes.

Attribute Value - Description

enable Options:

true: All power modes can be enabled. Selection of power modes is done automatically by the
firmware. Firmware will select the best power saving mode automatically to achieve lowest
possible power consumption.

false: Use this to prevent the firmware from entering any of the sleep modes.

Default:

true

max_mode Maximum power mode device is allowed to use.

Range:

1-3

Default:

3

Example : Allow power modes 1 and 2 and disable power mode 3.

<sleep enable="true" max_mode="2" />

When sleep mode (power mode 1, 2, or 3) is enabled and the module is not kept awake (for example
by using the wake-up pin), then the  Smart module  to any BGAPIBluetooth will not respond
commands or process any other incoming sent to it via UART. If you want to enable sleep mode and



Copyright © 2001-2014 Bluegiga Technologies Page  of 15 36

use the UART interface to communicate with the module, you need to enable the wake-up pin feature
(described below) and provide a wake-up signal from an external host.



Copyright © 2001-2014 Bluegiga Technologies Page  of 16 36

1.  
2.  

3.  
4.  

4.6 <wakeup_pin>

This feature is used to prevent the  Smart module from entering any sleep modes like power mode 3,Bluetooth
or alternatively used to to wake it up if it has entered a low power mode. If you use UART to communicate with
the module, then you need to enable this feature and assert the relevant pin before sending any streaming data
or BGAPI commands to the module, and keep it asserted until the last byte has been clocked into the module
over the UART RX pin.

The wake-up pin functionality can only be assigned to a single GPIO, but you can still assign normal GPIO
interrupts to other pins using BGAPI/BGScript commands. The difference between this special wake-up pin
operation and normal GPIO interrupts is that this pin will not only generate the interrupt which wakes the
module, but will also keep the module awake as long as it is held in the asserted state. Normal GPIO interrupts
can wake the module from any state (even power mode 3), but after the interrupt event handler completes, the
module will return to sleep (if sleep is enabled and not prevented via the wake-up pin).

The correct procedure for using the wake-up pin to send BGAPI packets over UART is as follows:

Assert the wake-up pin from an external host
Process the " " BGAPI event packet which is generated and sent out thehardware_io_port_status
module's TX pin
Send the desired BGAPI command packet to the module
Wait until you receive  before de-asserting theat least the first byte of the BGAPI response packet
wake-up pin

Important:

Step 2 above is critical because some sent data may be ignored if you do not process the port status
event before starting to send data.
Step 4 above is critical because if you de-assert the wake-up pin too soon (e.g. immediately after the last
byte is placed in the TX buffer of the attached UART host), then the last byte or two may not be properly
clocked into the module before it goes to sleep again, resulting in lost or corrupt data.

attribute description

enable Used to enable wake-up pin feature. Wake-up pin wakes the device up from a sleep mode or
prevents it from entering it again.

Options:

true: wake-up pin is enabled

false: wake-up pin is disabled

port Defines the port where wake-up pin is.

Options:

0-1

pin Defines the pin inside the selected port.

Options:

0-7

state Logic state for wake-up pin.

Options:

up

down



Copyright © 2001-2014 Bluegiga Technologies Page  of 17 36

attribute description

Default:

up

Example: Enabling wake-up on P0_0

<wakeup_pin enable="true" port="0" pin="0" state="up" />

When this pin is pulled, the  Smart module does not enter any sleep modes which increasesBluetooth
power consumption.

When this pin is used to wake up the  Smart module from sleep mode, a Bluetooth
 API event is triggered immediately, since it's handled as a normal GPIOhardware_io_port_status

interrupt. You should expect this event to occur and either handle it or ignore it intentionally if you are
using external control via the BGAPI protocol.



Copyright © 2001-2014 Bluegiga Technologies Page  of 18 36

4.7 <host_wakeup_pin>

This pin can be used to wake up an external host from sleep when the  Smart module has data to sendBluetooth
over the UART interface. The external host should then use flow control signals (or wake immediately) so that
the module can send data to it.

Notice that the host wake-up pin is only meant to wake up the host from a sleep mode and it does not
necessarily remain active during the UART transmission. The host therefore should not go back to sleep after
the host wake-up pin is de-asserted, but only after all the expected data has been received over UART.

attribute description

enable Use to enable the host wake-up pin feature. Host wake-up pin is asserted when the Bluetooth
Smart module has data to send.

Options:

true: host wake-up pin is enabled

false: host wake-up pin is disabled

port Defines the port used for the host wake-up.

Options:

0-2

pin Defines the pin inside the selected port.

Options:

0-7

state Logic state for host wake-up signal.

Options:

up

down

Default:

up

Example:

Example: Enabling wake-up on P1_1

<host_wakeup_pin enable="true" port="1" pin="1" state="up" />



Copyright © 2001-2014 Bluegiga Technologies Page  of 19 36

4.8 <txpower>

This can be used to configure the TX output power used since boot. Values represent roughly equal linear
divisions between the minimum and maximum output power as noted in the  attribute description.power

Attribute Value - Description

power Default TX power setting

Range:

0-15

BLE112 (BLED112): 15 is the highest TX power setting and equals roughly to 3dBm (0dBm),
while 0 is the lowest value and corresponds to around -24dBm.

BLE113: 14 is the highest TX power setting and equals roughly to +0dBm, while 0 is the lowest
value and corresponds to around -24dBm.

BLE121LR: 9 is the highest TX power setting and equals roughly to +8dBm, while 0 is the lowest
value and corresponds to around -10dBm.

Using a value of 15 with the BLE113, or using any value between 10 and 15 with the BLE121LR, is
the same as using respectively their max values of 14 or 9.

bias TX power amplifier bias setting. Do not modify.

Options:

5

Example: BLE112 with +3 dBm TX power
<txpower power="15" bias="5" />

Example: BLE112 with 0 dBm TX power
<txpower power="13" bias="5" />

Example: BLE113 with 0 dBm TX power
<txpower power="15" bias="5" />



Copyright © 2001-2014 Bluegiga Technologies Page  of 20 36

4.9 <pmux>

This setting is used to configure the control pin for an external DC/DC converter which can be used to reduce
the peak TX and RX power consumption. A GPIO pin needs to be dedicated to control the DC/DC converter's 

 or  modes. Any GPIO pin from Port 1 can be dedicated as the DC/DC control pin and theenable bypass
firmware will automatically control the pin depending on the Bluetooth transmission and reception states.

The BLE development kits contain an external DC/DC converter which is specifically designed to work with the
internal CC254x radio chipset. When the GPIO pin defined with  is high, the DC/DC converter is<pmux>
enabled, and when the GPIO pin is low, the converter is disabled. Note that the circuit is design to thedisable 
converter at all times except when the radio is active. By doing this, the input voltage is dropped to 2.1V only
when the radio is on and the resulting current consumption is less during transmissions. This is particularly
beneficial because of the battery chemistry of most small coin cells. The reduced current draw during
transmissions will notably extend the life of a typical CR2032 cell.

attribute description

regulator_pin Defines the output pin for the external DC/DC converter in Port 1.

Range:

0-7

Note:

Only pins of  can be used to control the DC/DC converter.Port 1

With the BLE121LR only pin P1_7 can be used.

clock_pin Defines the output pin in Port 0 for a 32.768 kHz clock signal, which can be used to provide
the clock value to external devices.

Range:

0-7

Note:

Only  can be used for clock signal output.Port 0

Example: This is for DKBLE112 and DKBLE113 with DC/DC control on P1_7 and no clock signal in use

<pmux regulator_pin="7" />



Copyright © 2001-2014 Bluegiga Technologies Page  of 21 36

4.10 <port>

This setting is used for the I/O port configuration settings (input only).

attribute description

index Port index to configure

Range: 

0-2

tristatemask Tristate configuration (bit mask) for port. For the pins defined with this bit mask, no high/low
pull will be used, but the pins will be in tristate mode.

Range: 

0x00 - 0xFF

For example 0x02 means pin number 1 is configured to be tristated instead of being pulled
high/low.

pull Defines the pull direction.

Options:

up: Pins are pulled up

down: Pins are pulled down

Note:

The pull direction will affect the whole port and and individual pin directions cannot be
configured.

Example : pulling all pins in Port 0 down

<port index="0" tristatemask="0" pull="down" />

By default all the ports except P1_0 and P1_1 are configured as inputs with pull-ups. P1_0 and P1_1
should be configured as outputs or pulled up externally.

All unused I/O pins should have a defined level and should not be left floating. This can be done by
leaving the pin unconnected and by configuring the pin as a general-purpose I/O input with a pull-up
resistor. Alternatively the pins can be configured as a general-purpose I/O output. In either case, the
pins should not be connected directly to VDD or GND, in order to avoid excessive power consumption.

Port 2 pins currently do not support interrupts. They may still be pulled up or down with the above
configuration in hardware.xml, but BGScript/BGAPI commands to enable interrupts on P2_* pins will
not have any effect. Only Port 0 and Port 1 pins support interrupts.



Copyright © 2001-2014 Bluegiga Technologies Page  of 22 36

4.11 <usb>

USB interface settings:

Attribute Value - Description

enable Enables or disables the USB interface.

Options:

true: Use this to enable the USB interface.

false: Use this to disable the USB interface.

Default:

false

endpoint Configures the USB interface usage purpose.

Options:

none: USB can be controller with a BGScript application

api: USB is used for the BGAPI protocol

test: See endpoint section for more information

script: do not use

usb: See endpoint section for more information

uart0: See endpoint section for more information

uart1: See endpoint section for more information

See: Endpoints available below.

Example : Enabling BGAPI over USB
<usb enable="true" endpoint="api" />

Example : Enabling USB access for BGScript
<usb enable="true" endpoint="none" />

In the BLED112, the interface must always be enabled or the dongle becomes non-communicative,
resulting in a potentially bricked device.
In the BLE112, this should be set to false, unless the interface is really needed, since USB constantly
uses 5+ mA of current.
In the BLE113 and BLE121LR, this must always be set to false, since this module does not have a
USB interface.



Copyright © 2001-2014 Bluegiga Technologies Page  of 23 36

4.12 <usart>

This setting is used to configure the USART interface of the BLE112, BLE113, or BLE121LR  SmartBluetooth
modules.

In UART mode, the number of data bits is 8 and parity is set to none. Number of data bits and parity cannot be
reconfigured.

attribute description

channel USART channel to configure

Options:

0: USART channel 0

1: USART channel 1

baud USART baudrate and SPI master clock.

Range:

1200 - 2000000

alternate Alternate configuration option for USART.

Options:

1: Alternative configuration 1 (see data sheet for details)

2: Alternative configuration 2 (see data sheet for details)

endpoint Configures the UART interface usage purpose.

Options:

none: USART interface can be controller with a BGScript application

api: USART is configured as the host interface making use of the BGAPI protocol

Note:

The BGAPI protocol is not available over the interface operating in SPI mode.

mode USART operation mode.

Options:

uart: USART is configured as UART interface. When BGAPI is used over UART in this mode,
hardware flow control MUST be used.

packet: USART is configured as UART interface using the BGAPI packet mode. This allows
BGAPI to be used over UART without hardware flow control.

spi_master: USART is configured as SPI master.

spi_slave: USART is configured as SPI slave. Not recommended to be used due to the SPI
slave interface limitations (see below).

Default:

uart

Note:



Copyright © 2001-2014 Bluegiga Technologies Page  of 24 36

attribute description

See the BGAPI protocol description from the API reference manual for more information about
the packet mode.

polarity SPI polarity configuration

Options:

positive: Configures the SPI clock polarity to be positive

negative: Configures the SPI clock polarity to be negative

Default:

negative

phase SPI clock phase

Options:

0

1

Default:

1

endianness SPI bit ordering

Options:

msb: most signigicant bit

lsb: least significant bit

flow UART flow control setting

Options:

true: Hardware flow control (RTS and CTS) enabled

false: Hardware flow control (RTS and CTS) disabled

Default:

true

stop UART stop bit logic

Options:

high

low

Default:

high

start UART start bit logic

Options:

high

low



Copyright © 2001-2014 Bluegiga Technologies Page  of 25 36

attribute description

Default:

low

Note:
Must be different than stop bit logic.

stopbits UART stop bits

Options:

1: One stop bit

2: Two stop bits

Default:

1

Example : Enabling BGAPI over UART on DKBLE

<usart channel="1" alternate="1" baud="115200" endpoint="api" />

Example : Enabling UART access for BGScript on DKBLE

<usart channel="1" alternate="1" baud="115200" endpoint="none" />

Example : Enabling SPI master interface on DKBLE to control the display

<usart channel="0" mode="spi_master" alternate="2" polarity="positive" phase="1" endianness="msb"
baud="57600" endpoint="none" />

SPI slave limitations

The Bluegiga BLE modules are really only practical as a SPI master. It has only a 1-byte hardware
buffer in the USART which implements SPI functionality, and the BLE stack doesn't currently provide
any methods for generating an API-level interrupt when there is new data coming in from the master
(e.g. when the Slave Select pin is asserted or when data is clocked in). This means that SPI slave
functionality requires constant polling and very slow data transfers. Additionally, there is no BGAPI

, so even this very limited implementation is only usable withcontrol possible over the SPI interface
a BGScript-based application.



Copyright © 2001-2014 Bluegiga Technologies Page  of 26 36

4.13 <timer_ticks>

This configuration controls a global prescaler for Timer 1, Timer 3, and Timer 4. The prescaler value (speed
attribute) can be set to a value between 0.25 MHz to 32 MHz (while the system clock is fixed at 32 MHz, that is,
when <slow_clock> is set to false).

This setting can be used to slow down the clock value to give to the timer and generate longer values when
using for example PWM output signals.

attribute description

speed Timer tick settings.

Options:

0: 32 MHz
: 16 MHz1
: 8 MHz2
: 4 MHz3
: 2 MHz4
: 1 MHz5
: 500 kHz6
: 250 kHz7

Example : 32 MHz timer
<timer_ticks speed="0" />



Copyright © 2001-2014 Bluegiga Technologies Page  of 27 36

4.14 <timer>

This configuration is used to configure the hardware timer(s) of the BLE112/113 module.  is reserved forTimer 2
internal use by the BLE stack.

attribute description

index Timer index to configure.

Options:

1: Timer 1

3: Timer 3

4: Timer 4

enabled_channels Enabled channels for specified timer.

Range:

0x00 - 0xFF

divisor Divisor for specified timer .

Timer 1:

0: Tick frequency/1

1: Tick frequency/8

2: Tick frequency/32

3: Tick frequency/128

Timer 3 and Timer 4:

0: Tick frequency/1

1: Tick frequency/2

2: Tick frequency/4

3: Tick frequency/8

4: Tick frequency/16

5: Tick frequency/32

6: Tick frequency/64

7: Tick frequency/128

mode Operating mode for specified timer.

Timer 1:

0 : Suspended

1 : Free running

2 : Modulo

3 : Up/Down



Copyright © 2001-2014 Bluegiga Technologies Page  of 28 36

attribute description

Timer 3 and Timer 4:

0 : Free running

1 : Down

2 : Modulo

3 : Up/Down

alternate Alternate configuration for specified timer.

Options:

1: Alternative configuration 1 (see data sheet for details)

2: Alternative configuration 2 (see data sheet for details)

Example: 4-channel PWM configuration

<timer index="1" enabled_channels="0x1f" divisor="0" mode="2" alternate="2" />



Copyright © 2001-2014 Bluegiga Technologies Page  of 29 36

4.15 <otaboot>

Bootloader configuration for Over-the-Air update.

attribute description

source Source where image is updated from.

Options:

external: External SPI flash memory is used

internal: Internal memory is used (requires 256kB internal flash module variant)

uart SPI USART channel to which external flash chip is connected.

Options:

0: USART channel 0

1: USART channel 1

cs_port Chip select port for SPI memory

Options:

0: Port 0

1: Port 1

cs_pin Chip select pin for SPI memory

Options:

0-7: Pin 0 to pin 7

power_port Power port for SPI memory

Options:

0: Port 0

1: Port 1

Note: P1_0 and P1_1 are recommended since they can provide high power output and can
power the flash chip directly.

power_pin Power pin for SPI memory

Options:

0-7: Pin 0 to pin 7

Note: P1_0 and P1_1 are recommended since they can provide high power output and can
power the flash chip directly.

Example: Enabling external SPI flash board on DKBLE

<otaboot source="external" uart="0" cs_port="1" cs_pin="2" power_port="1" power_pin="0" />



Copyright © 2001-2014 Bluegiga Technologies Page  of 30 36

4.16 Endpoints

The possible endpoint values used either for USB or UART are listed below:

Value description

none Data can be read from/written to BGScript when using  command and system_endpoint_tx
 event in BGScript code.system_endpoint_rx

api Endpoint is connected to BGAPI protocol.

test Endpoint is connected to UART  testing purposes.Bluetooth

script Do not use.

usb Endpoint is connected to USB interface.

uart0 Endpoint is connected to UART0 interface.

uart1 Endpoint is connected to UART1 interface.

4.17 Examples

Example for BLED112 USB dongle to enable BGAPI protocol over USB interface:

<?xml version="1.0" encoding="UTF-8" ?>
   <hardware>
       <txpower power="15" bias="5" />
       <usb enable="true" endpoint="api" />
       <sleeposc enable="false" ppm="30" />
   </hardware>

Below is an example of hardware configuration file used with BLE112, BLE113 or BLE121LR module, which
uses BGAPI protocol over UART on DKBLE. Also the DC/DC control pin is enabled to control the external
DC/DC converter and the wake-up pin is enabled in P0_0 pin (button).

Never use the configuration below with a BLED112 USB dongle.

<?xml version="1.0" encoding="UTF-8" ?>
<hardware>
    <sleeposc enable="true" ppm="30" />
    <usb enable="false" endpoint="none" />
    <txpower power="15" bias="5" />
    <usart channel="1" alternate="1" baud="115200" flow="true" endpoint="api" />
    <wakeup_pin enable="true" port="0" pin="0" />
    <port index="0" tristatemask="0" pull="down" />
    <pmux regulator_pin="7" />
</hardware>



Copyright © 2001-2014 Bluegiga Technologies Page  of 31 36

5 Application Configuration File (config.xml)

This application configuration file is used to configure some of the  Smart Software's features such asBluetooth
the number of maximum connections. This file is optional.

5.1 <connections>

Defines the maximum number of connections that are supported by the firmware.

Attribute Value - Description

value Defines how many connections are supported. Affects how much RAM to reserve for connections.

Range:

1 - 8

Default: 

1

Example : Enabling one (1) connection

<connections value="1" />

Example : Enabling eight (8) connections

<connections value="8" />

When more then one (1) connection is supported in the  file, then connection interval valuesconfig.xml
(minimum and maximum) used in  connection commands must be divisible by  * all connections 2.5ms

Examples:

If three (3) connections are supported, then the connection interval range has to contain limit values
that are divisible by = . In this case, any multiple value of  can be used, such as 3 * 2.5ms 7.5ms 7.5ms

, , , , etc.7.5ms 15ms 22.5ms 30ms

Alternatively, if two (2) simultaneous connections are supported, the interval values must be divisible
by . Notice that in this case, the lowest possible interval of  cannot be used because it is not5ms 7.5ms
divisible by , so only larger connection intervals such as , , etc. can be used.5.0ms 10ms 15ms

If only one (1) connection is supported, then any connection interval can be used when issuing
connection commands.

5.2 <defrag>

Defines whether the persistent store is defragmented automatically at boot time.

Attribute Value - Description

enable Defragmentation enabled

Options:

true: Defragmentation run at boot

false: Defragmentation during boot disabled



Copyright © 2001-2014 Bluegiga Technologies Page  of 32 36

Attribute Value - Description

Default:

true

5.3 <manual_confirm>

If this tag exists in the  file, then manual confirmation of attribute indications will be enabled. config.xml Note
 and does not take any attributes.that it only needs to exist

When the  Smart stack receives attribute indications from a remote device, it produces an Bluetooth
 event to the host, where the type is attclient_attribute_value

. The host (application) must respond to this event with the attclient_attribute_value_type_indicate_rsp_req
 command after it has properly handled the indication to acknowledge that the dataattclient_indicate_confirm

has been received.

This feature can be used by the host software to acknowledge the indication data, and this provides extra
reliability in some kinds of application. If this tag is not present, then the BLE stack will automatically
acknowledge indications upon reception.

Attribute Value - Description

Enables or disables manual indication confirmations.

Example: Enabling manual confirmations

<manual_confirm />

5.4 <script_timeout>

Defines maximum number of steps (commands) a BGScript can run within an event before a 
 is raised.system_script_failure

Attribute Value - Description

value Maximum number of steps a BGScript can take.

Range:

0 - 65535

Default: 

1000

Example : disabling script timeout feature

<script_timeout value="0" />

Example : Limiting BGScript steps to 10000

<script_timeout value="10000" />

This timeout is especially recommended to be used when developing BGScript applications into
BLED112 USB dongle.



Copyright © 2001-2014 Bluegiga Technologies Page  of 33 36

5.5 <throughput>

Defines how data packets are sent over the air during each connection interval.

Attribute Value - Description

optimize Throughput optimization setting

Options:

power: Only a single packet is sent at each connection interval. This setting minimizes power
consumption, but might limit throughput.

balanced: Sends only packets that fit in the transmission buffer, which is 128 bytes. Normally 3-4
packets will fit, depending on user payload and overhead.

performance: Maximizes throughput by loading new packets into transmission buffer and sending
them as soon as the previous packets have been successfully transmitted. Increases power
consumption.

Default: 

balanced

Example : Optimizing data throughput

<throughput optimize="performance" />

Example : Optimizing power consumption

<throughput optimize="power" />

5.6 <passkey>

This configuration defines a fixed passkey to be used during MITM paring instead of a randomly generated
passkey.

If this tag is not used, then the passkey for Man-in-the-Middle pairing will be randomly generated, as described
in the  specification.Bluetooth

Attribute Value - Description

passkey Defines a six (6) digit fixed passkey used during MITM pairing.

Range:

000000 - 999999

Default:

disabled

Example : Use fixed MITM passkey 246802

<passkey value="246802" />

When this configuration is enabled, the device will default to a  I/O capability setting. Thedisplay only
remote device pairing with this device must have  or  capabilities, orkeyboard only keyboard/display
else J  pairing is used automatically.ust Works



Copyright © 2001-2014 Bluegiga Technologies Page  of 34 36

5.7 <user_data>

Defines how much continuous flash space will be allocated for user data. This space is taken from the pool that
would otherwise been used for PS keys. Data size allocated will be rounded up to nearest 2KB.

When implementing the Over-the-Air (OTA) firmware update by storing the update image to the module's built-in
flash, this space must be pre-allocated. The allocated size must be at least the size of the firmware update for
the update to be possible. If you allocate flash for user data and want to also support OTA firmware update,
make sure there is enough flash space reserved for the firmware update as well. When you compile the firmware
with bgbuild.exe the compiler output will give an indication of the required flash allocation.

Attribute Value - Description

size Defines how much data is allocated for the user data.

Default:

0

file Optionally initialize the data from a file.

If both the  and  attributes are used than the allocated flash space will be the larger of thefile size
two rounded up to closest 2kB.

Example: Allocating 1280 bytes from the flash for user data

<user_data size="0x500" />

5.8 <dfu>

This configuration option can be used to disable DFU firmware update feature.

Attribute Value - Description

enable Options:

true: Booting to DFU mode is allowed

false: Booting to DFU mode is not allowed

Default:

true

Example: Disabling DFU firmware update

<dfu enable="false" />

If using this option with a BLED112 device or another end-product, which does not expose the HW
debugging interfaces for re-flashing the BLE firmware, the firmware of the device is permanently
locked.

5.9 Examples

Below is an example of  that enables a single (1) connection, disables BGScript timeout andconfig.xml
configures the throughput for balanced mode.



Copyright © 2001-2014 Bluegiga Technologies Page  of 35 36

<?xml version="1.0" encoding="UTF-8" ?>
<config>
    <connections value="1" />
    <script_timeout value="0" />
    <throughput optimize="balanced" />
</config>



Copyright © 2001-2014 Bluegiga Technologies Page  of 36 36

Contact information

Sales: sales@bluegiga.com

Technical support: http://www.bluegiga.com/support/

Orders: orders@bluegiga.com

WWW: http://www.bluegiga.com

Head Office / Finland: Phone: +358-9-4355 060

Fax: +358-9-4355 0660

Sinikalliontie 5 A

02630 ESPOO

FINLAND

Head address / Finland: P.O. Box 120

02631 ESPOO

FINLAND

Sales Office / USA: Phone: +1 770 291 2181

Fax: +1 770 291 2183

Bluegiga Technologies, Inc.

3235 Satellite Boulevard, Building 400, Suite 300

Duluth, GA, 30096, USA

Sales Office / Hong-Kong: Phone: +852 3182 7321

Fax: +852 3972 5777

Bluegiga Technologies, Inc.

Unit 10-18, 32/F, Tower 1, Millennium City 1,

388 Kwun Tong Road, Kwun Tong, Kowloon,

Hong Kong

http://www.bluegiga.com/support/
http://www.bluegiga.com/


    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

USING BLED112 WITH RASPBERRY PI 

QUICK START GUIDE 

Tuesday, 15 April 2014 

Version 1.1 

 



 

 

Bluegiga Technologies Oy 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © 2000-2014 Bluegiga Technologies 

Bluegiga Technologies reserves the right to alter the hardware, software, and/or specifications detailed herein 

at any time without notice, and does not make any commitment to update the information contained herein. 

Bluegiga Technologies assumes no responsibility for any errors which may appear in this manual. Bluegiga 

Technologies' products are not authorized for use as critical components in life support devices or systems. 

Bluegiga Access Server, Access Point, APx4, AX4, BSM, iWRAP, BGScript and WRAP THOR are trademarks 

of Bluegiga Technologies. 

The Bluetooth trademark and logo are registered trademarks and are owned by the Bluetooth SIG, Inc. 

ARM and ARM9 are trademarks of ARM Ltd. 

Linux is a trademark of Linus Torvalds. 

All other trademarks listed herein belong to their respective owners. 



 

 

Bluegiga Technologies Oy 

VERSION HISTORY 

Version Comment 

1.0 First version 

1.1 Minor changes 



 

 

Bluegiga Technologies Oy 

TABLE OF CONTENTS 

1 Introduction ....................................................................................................................................................5 

2 Setting up Software .......................................................................................................................................6 

2.1 Testing Bluetooth Smart communications ............................................................................................7 

3 Testing more complex communication with BGAPI: .....................................................................................8 

4 Additional information: ...................................................................................................................................8 

5 Support ..........................................................................................................................................................8 



 

 

Bluegiga Technologies Oy 

Page 5 of 8 

1 Introduction 

This guide contains the basic setup instructions needed to start using the BLED112 Bluetooth Smart USB 
dongle with the Raspberry Pi. Note that some general Linux experience is assumed and will greatly help 
with development or troubleshooting in this process. 

 

 

Figure 1: BLED112 dongle 

 

 

Figure 2: Raspberry Pi Model B 

 

 

Since the BLED112 is a simple USB dongle, the only action necessary is to plug it into one of the Raspberry 
Pi’s available USB ports. This may be done at any time, before or after the system has power or has finished 
booting. 

 

 

 

Figure 3: BLED112 in a Raspberry Pi USB port 

 

 



 

 

Bluegiga Technologies Oy 

Page 6 of 8 

2 Setting up Software 

Use the current standard Raspbian “Wheezy” Linux build available here: 

 http://www.raspberrypi.org/downloads 

No drivers should be necessary, since the BLED112 is a full-stack device which enumerates as a USB CDC 
port. It does not require any Bluetooth stack such as “bluez” to be present on the host. However, you can still 
verify device connectivity and that the correct kernel module has been loaded by connecting to the Raspberry 
Pi via SSH (or a direct terminal session with a keyboard and display), and then checking the output of 
“lsusb”, “lsmod”, and “ls /dev/ttyACM*” as shown here: 

 

 

Figure 4: “lsusb” output (BLED112 appears as ID 2458:0001) 

 

 

Figure 5: “lsmod” output (BLED112 uses cdc_acm module) 

 

Figure 6: “ls /dev/ttyACM*” output (BLED112 appears as /dev/ttyACM0) 

 

 

http://www.raspberrypi.org/downloads


 

 

Bluegiga Technologies Oy 

Page 7 of 8 

2.1 Testing Bluetooth Smart communications 

Testing Bluetooth Smart communication: 

This guide was written with the following starting configuration: 

 Raspberry Pi model B, 256MB version 

 Fresh 4GB SD card written with 2013-02-09-wheezy-raspbian.img 

 Bluegiga BLED112 running factory default “usbcdc” firmware 

 Wired Ethernet connection to a local network connected to the internet 

 Any Bluetooth Smart peripheral device nearby 

Your configuration may be slightly different, but the instructions here should still apply. To prepare and run a 
basic Python-based BLE scanner, enter the following commands from a terminal or SSH session: 

 

 

This will install the python-serial package (which provides PySerial), then download the Python BGAPI-based 
BLE scanner script, make it executable, and finally run it using all of the default parameters. If there are any 
advertising BLE peripheral devices nearby, then you should begin seeing output like the following: 

 

 

You can explore the various argument options for this scanner script by running it with the -h or --help 

argument. 

Note that if you do not have a BLE peripheral device nearby but you do have an iPhone 4S+ or iPad 3+ or 
iPad Mini running iOS 6+, then you can use some freely available iOS apps to emulate a heart rate sensor or 
temperature sensor peripheral device. 

 

================================================================ 

BLED112 Scanner for Python v2013-05-10 

================================================================ 

Serial port:    /dev/ttyACM0 

Baud rate:      115200 

Scan interval:  200 (125.00 ms) 

Scan window:    200 (125.00 ms) 

Scan type:      Passive 

UUID filters:   None 

MAC filter(s):  None 

RSSI filter:    None 

Display fields: - Time 

                - RSSI 

                - Packet type 

                - Sender MAC 

                - Address type 

                - Bond status 

                - Payload data 

Friendly mode:  Disabled 

---------------------------------------------------------------- 

Starting scan for BLE advertisements... 

1368200810.904 -52 0 000780535BB4 0 255 020106020A0306FFFFFFB1B2B3 

1368200812.410 -52 0 000780535BB4 0 255 020106020A0306FFFFFFB1B2B3 

1368200813.915 -52 0 000780535BB4 0 255 020106020A0306FFFFFFB1B2B3 

 

sudo apt-get install python-serial 

wget https://raw.github.com/jrowberg/bglib/master/Python/Examples/bled112_scanner.py 

chmod +x ./bled112_scanner.py 

./bled112_scanner.py 

 

http://pyserial.sourceforge.net/
https://raw.github.com/jrowberg/bglib/master/Python/Examples/bled112_scanner.py


 

 

Bluegiga Technologies Oy 

Page 8 of 8 

3 Testing more complex communication with BGAPI 

The bled112_scanner.py script implements only a limited subset of the full BGAPI communication protocol, 
but you can do a lot more with BGAPI than just scan for other devices. You can act as a BLE master 
(central/manager) device and connect to other peripherals and use them, or you could even act as a BLE 
peripheral device to allow a BLE master such as an iPhone or iPad to connect and control the Raspberry Pi. 

To get started with something more complicated, you can download the Python bglib library, which is a port of 
the C wrapper we provide in our SDK. To download this code and a couple of example scripts which use it, 
enter the following commands in a terminal or SSH session: 

 

 

Note that you will still need to install the python-serial package as shown in the earlier scanner example if 
you do not already have it. 

Each of the three example scripts above are built around the event-driven bglib Python library. The library 
itself is a single-file Python module which can be imported into any Python application. The examples above 
have the following functionality: 

- bglib_test_scanner.py: 
Similar to the “bled112_scanner.py” example, this application uses the command/ response/event 
structure of BGAPI to scan for nearby BLE devices and display any resulting advertisement packets. 
 

- bglib_test_htm_collector.py: 
This application scans for BLE devices which are advertising the official “Health Thermometer” 
service, then automatically connects when it finds one and configures the remote device to send 
temperature readings. These readings are displayed as they come in. 
 

- bglib_test_hr_collector.py: 
This application scans for BLE devices which are advertising the official “Heart Rate” service, then 
automatically connects when it finds one and configures the remote device to send heart rate 
measurements. These are displayed as they come in. 

4 Additional information 

The latest data sheets, design references, and full API Reference Guide are available in Bluegiga’s BLED112 
product page: 

- http://www.bluegiga.com/en-US/products/bluetooth-4.0-modules/bled112-bluetooth-smart-
dongle/documentation/ 

Always refer to the latest documentation when working with the BLED112 Bluetooth dongle.   

5 Support 

Technical support is available online: http://www.bluegiga.com/support  

wget https://raw.github.com/jrowberg/bglib/master/Python/bglib.py 

wget https://raw.github.com/jrowberg/bglib/master/Python/Examples/bglib_test_scanner.py 

wget https://raw.github.com/jrowberg/bglib/master/Python/Examples/bglib_test_htm_collector.py 

wget https://raw.github.com/jrowberg/bglib/master/Python/Examples/bglib_test_hr_collector.py 

chmod +x ./bglib_test_* 

 

http://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.health_thermometer.xml
http://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.health_thermometer.xml
http://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.heart_rate.xml
http://www.bluegiga.com/en-US/products/bluetooth-4.0-modules/bled112-bluetooth-smart-dongle/documentation/
http://www.bluegiga.com/en-US/products/bluetooth-4.0-modules/bled112-bluetooth-smart-dongle/documentation/
http://www.bluegiga.com/support
https://raw.github.com/jrowberg/bglib/master/Python/bglib.py
https://raw.github.com/jrowberg/bglib/master/Python/Examples/bglib_test_scanner.py
https://raw.github.com/jrowberg/bglib/master/Python/Examples/bglib_test_htm_collector.py
https://raw.github.com/jrowberg/bglib/master/Python/Examples/bglib_test_hr_collector.py


PRODUCT 
COMPARISON 

GUIDE
2014



ABOUT US
Founded in 2000 and headquartered in Espoo, Finland, Bluegiga is committed to providing innovative, easy-to-use, 

short-range wireless connectivity solutions to product designers throughout the world. Our competitive advantage 

comes from a unique combination of high performance radios, connectivity software, and superior customer support.

Our product line-up includes ultra-low power Bluetooth Smart modules, high performance Bluetooth Classic audio and 

data modules, and high-speed Wi-Fi modules. Bluegiga customers include industry leaders in consumer electronics, 

health and wellness, automotive aftermarket, sports and fitness, M2M and industrial telemetry.

OUR VALUE PROPOSITION
RF EXPERTISE AND PERFORMANCE – We design high quality and certified radio modules that deliver the reliability 

and performance required, even for the most demanding applications.

INTEGRATED CONNECTIVITY SOFTWARE – Bluegiga has developed our own Bluetooth classic, Smart and Wi-Fi 

software stacks giving us a unique advantage to support, maintain, and further develop or customize our software to 

match our customers’ needs.  

CUSTOMER SERVICE - We have a highly skilled and global Field Application Engineering team, who will review your 

design, help optimize your software, and instruct you in how to use our products.

QUALITY AND PRODUCT LIFE TIMES - The products we manufacture are designed to last for many, many years and 

meet the most rigorous operating specifications.

GLOBAL CHANNELS AND PARTNERS – Our products are available globally through a network of more than 50 

partners ranging from worldwide distributors and online stores to locally focused distributors and representatives who 

sell and support our products in over 60 countries.

2



TECHNICAL 
SPECIFICATIONS

Radio frequency 2.4GHz 2.4GHz 2.4GHz 2.4GHz or 5.8GHz

Distance/Range ~10-100 meters ~10-100 meters ~10-100 meters ~10-100 meters

Symbol rate 1-3Mbps 1Mbps 1-3Mbps 1.69Gbps

Application throughput up to 2.1 Mbps up to 250 kbps up to 2.1 Mbps or 

250kbps*

up to 100 Mbps

Nodes/Active slaves 7 Unlimited 7 / unlimited* 32

Security 56 to 128 bit 128-bit AES 128 bit AES WPA2/AES

Modulation FHSS FHSS FHSS DSSS and OFDM

Latency (not from connected 

state to send data)

100+ ms <6ms <6ms or 100+ms” 150ms

Government regulation Worldwide Worldwide Worldwide Worldwide

Certification body Bluetooth SIG Bluetooth SIG Bluetooth SIG IEEE/WECA

Voice capable Yes No Yes Yes

Network topology Point-to-point, star,

scatternet

Point-to-point, star,

scatternet

Point-to-point, star, 

scatternet*

Star, point-to-point

Power consumption 1 (reference value) 0.01 to 0.5 (use case 

dependent)

1 (reference value) 2 (use case dependent)

Service discover Yes Yes Yes N/A

Profile concept Yes Yes Yes No

Primary use cases Mobile phones, 

headsets, stereo audio, 

automotive, PCs etc.

Mobile phones, tablets, 

gaming, PCs, sport & 

fitness, medical, 

automotive, 

industrial automation, 

home electronics etc.

Mobile phones, 

headsets, stereo audio, 

automotive, PCs etc.

Mobile phones, Tablets, 

PCs, Servers, medical, 

industrial automation, 

home electronics, etc.

Profiles Serial Port, 

Hands-free, HID, A2DP, 

AVRCP, etc.

Proximity profile, 

battery status, weight 

scale, heart rate 

monitor, humidity, etc.

Classic Bluetooth 

profiles and/or 

Bluetooth smart 

profiles*

N/A

*Capabilities will vary based on operating mode between classic Bluetooth or Bluetooth Smart

3

B
lu

e
to

o
th

 C
la

s
s
ic

  
M

o
d

u
le

 C
o

m
p

a
r
is

o
nCLASSIC

BLUETOOTH
BLUETOOTH 

SMART WI-FI
BLUETOOTH

SMART READY

B
lu

e
to

o
th

 C
la

s
s
ic

  
M

o
d

u
le

 C
o

m
p

a
r
is

o
n

T
e

c
h

n
o

lo
g

y
 C

o
m

p
a

r
is

o
n



BLUETOOTH 

Version Bluetooth 4.0 Bluetooth 4.0 

Single mode Yes Yes 

Dual mode - - 

Roles central/peripheral central/peripheral

RADIO 

TX power +2-3 dBm 0 dBm 

RX sensitivity -92 dBm -89 dBm 

Class - - 

Typical Range* 150m 30m 

ANTENNA OPTIONS 

Integrated Yes Yes

U.FL Yes - 

INTERFACES  

UART 2 (or SPI) - 

USB 2.0 device 2.0 device 

SPI 2 (or UART) - 

I2C 1 (soft I2C) - 

PWM 4 (or timer) - 

GPIO 
19 configurable 

(shared) 
- 

ADC 7 x 12 bit - 

Wake-up interrupt Yes - 

Comparator 1 - 

Timers 
2x8-bit and 

1x16-bit (or PWM) 
- 

Op-amp Yes - 

Battery monitor Yes - 

Temperature sensor Yes Yes 

Debug Yes - 

IR generation Yes - 

PCM - - 

I2S - - 

MICROCONTROLLER  

Architecture 8051 8051 

RAM 8 kB 8 kB 

Flash 128 kB 128 kB 

EEPROM - - 
 

Bluetooth 4.0 Bluetooth 4.0 Bluetooth 4.0

Yes Yes -

- - Yes

central/peripheral central/peripheral

 

0 dBm +8 dBm +8 dBm 

-93 dBm -98 dBm -89 dBm 

- 1 1 

100m 250-450m 100m 

 

Yes Yes Yes 

- - -

 

2 (or SPI) 2 (or SPI) - 

- - 2.0 device 

2 (or UART) 2 (or UART) - 

1 1 - 

4 (or timer) 4 (or timer) - 

19 configurable 

(shared) 

16 configurable 

(shared) 
6 

7 x 12-bit 7 x 12-bit - 

Yes Yes - 

1 1 - 

2x8-bit and 

1x16-bit (or PWM) 

2x8-bit and 

1x16-bit (or PWM) 
- 

Yes Yes - 

Yes Yes - 

Yes Yes - 

Yes Yes Yes 

Yes Yes - 

- - Yes 

- - Yes 

 

8051 8051 16-bit RISC (XAP2) 

8 kB 8 kB - 

128 kB / 256 kB 256 kB - 

-  64kB 
4

 BLE112 
Bluetooth 

Smart Module

BLED112 
Bluetooth 

Smart Dongle

BLE121LR
Bluetooth 

Smart Long 
Range Module

 BT111
Bluetooth 

Smart Ready 
HCI Module

 BLE113
Bluetooth 

Smart Module

B
lu

e
to

o
th

 4
.0

 M
o

d
u

le
 C

o
m

p
a

r
is

o
n



18.2 mA 27 mA 70 mA 

17.9 mA 19.6 mA 52 mA 

1 uA 1 uA - 

0.5 uA 0.5 uA 370uA 

 

2.0 - 3.6V 2.0 - 3.6V 2.3 - 5.7V

Yes Yes No 

Yes Yes - 

Yes Yes - 

Yes Yes - 

Yes Yes - 

Yes Yes - 

BGAPI™ protocol BGAPI™ protocol HCI 

up to 8 up to 8 
7 x Bluetooth classic 

5 x Bluetooth LE 

- - HCI over USB 

Yes Yes - 

 

Yes Yes Yes*

Yes Yes Yes*

Yes Yes Yes*

Yes Yes Yes*

Yes Yes Yes*

Yes Yes Yes*

 

Yes Yes -

Yes Yes -

Yes Yes -

Yes Yes Stack dependent 

Yes Yes -

Bluegiga SDK Bluegiga SDK Stack dependent 

IAR Embedded 

Workbench

IAR Embedded 

Workbench
Stack dependent 

 

Bluetooth, CE, 

FCC, IC, South 

Korea and Japan

Bluetooth, CE, 

FCC, IC, South 

Korea and Japan 

Bluetooth, CE, 

FCC, IC, South 

Korea and Japan

 

9.15 x 15.75 x 1.9 mm 14.7 x 13.0 x 1.8 mm 9.3 x 13.05 x 2.3 mm
  

* Depends on the host Bluetooth stack

 BLE112 
Bluetooth 

Smart Module

BLED112 
Bluetooth 

Smart Dongle

BLE113
Bluetooth 

Smart Module

BLE121LR
Bluetooth 

Smart Long 
Range Module

BT111
Bluetooth 

Smart Ready 
HCI Module

5

CURRENT CONSUMPTION 
TX peak 27 mA N/A 

RX peak 19.6 mA N/A 

Sleep (timer active) 1 uA N/A 

Sleep (external wake-up) 0.5 uA N/A 

OPERATING VOLTAGE 
Operating voltage 2.0 - 3.6V 5V 

BLUETOOTH SOFTWARE STACK
Integrated stack Yes Yes 

ATT Yes Yes 

GATT Yes Yes 

GAP Yes Yes 

L2CAP Yes Yes 

Security manager Yes Yes 

Host API BGAPI™ protocol  BGAPI™ protocol 

Connections
up to 8 up to 8 

HCI - - 

IP licensing Yes Yes 

SUPPORTED PROFILES
GAP Yes Yes 

Manufacturer service Yes Yes 

Battery service Yes Yes 

Proximity profile Yes Yes 

HR profile Yes Yes 

Temperature profile Yes Yes 

SOFTWARE DEVELOPMENT
On-board app support Yes Yes 

BGScript™ Yes Yes 

Profile toolkit™ Yes Yes 

BGLib™ (Host C library) Yes Yes 

Software dev service Yes Yes 

SDK/IDE Bluegiga SDK Bluegiga SDK 

C SDK
IAR Embedded 

Workbench
-

CERTIFICATIONS
Certifications Bluetooth, CE, 

FCC, IC, South 

Korea and Japan 

Bluetooth, CE, FCC, 

IC, South Korea, 

Japan and Brazil

DIMENSIONS `

Dimensions (W x L x H) 12 x 18 x 2.3 mm 17 x 12 x 6.5 mm 

4

B
lu

e
to

o
th

 4
.0

 M
o

d
u

le
 C

o
m

p
a

r
is

o
n



BLUETOOTH 

Version Bluetooth 2.1 + 

EDR 

Bluetooth 2.1 + 

EDR

Bluetooth 2.1 + 

EDR

Bluetooth low energy 

support 

- - - 

BR/EDR support Yes Yes Yes 

RADIO    

Typical TX power +3 dBm +17 dBm +19 dBm 

Typical RX sensitivity -83 dBm -85 dBm -93 dBm 

Class 2 1 1 

Typical range* 30-50m 200-400m 500-1000m 

ANTENNA OPTIONS   

Integrated chip Yes Yes Yes 

U.FL - Yes Yes 

INTERFACES    

UART 1 1 1 

USB 2.0 device 2.0 device 2.0 device 

GPIO 6 configurable 6 configurable 6 configurable 

AIO - 1 x 8-bit 1 x 8-bit 

Debug (SPI) 1 1 1 

AUDIO INTERFACES   

PCM 1 1 1 

I2S - - - 

SPDIF - - - 

Analogue - - - 

MICROCONTROLLER   

Architecture 16-bit RISC (XAP2) 16-bit RISC (XAP2) 16-bit RISC (XAP2) 

RAM 48 kB 48 kB 48 kB 

Flash 8 Mbit 8 Mbit 8 Mbit 

DSP - - - 

OPERATING VOLTAGE   

Operating voltage 2.7 - 3.6V 2.7 - 3.6V 2.7 - 3.6V 

PHYSICAL CONNECTION

Type solder pads castellated edges castellated edges

 * Line-of-sight unobstructed range measured between two identical modules

Bluetooth 3.0 Bluetooth 2.1+EDR

- - 

Yes Yes 

  

+6.5 dBm 0 dBm 

-90 dBm -90 dBm 

1.5 1.5 

100-200m 30m 

  

Yes Yes 

Yes  Yes (W.FL) 

  

1 1 

2.0 device 2.0 device 

10 configurable 10 configurable 

2 x 10-bit 2 x 10-bit 

1 1 

  

1 1 

1 1 

1 1 

2 inputs/outputs 2 inputs/outputs 

  

16-bit RISC (XAP2) 16-bit RISC (XAP2) 

48 kB 48 kB 

16 Mbit 8 Mbit 

Kalimba DSP Kalimba DSP 

  

1.8 - 4.4V 1.8 - 4.4V 

solder pads castellated edges

WT32
Class 2

Audio Module

WT12 
Class 2  
Module

WT11i
Class 1  
Module

WT32i
Class 2

Audio Module

WT41
Long Range 

Module

6

B
lu

e
to

o
th

 C
la

s
s
ic

  
M

o
d

u
le

 C
o

m
p

a
r
is

o
n



3.0 2.1 + EDR / 3.0 

Yes Yes 

Yes Yes 

1-6 1-6 

ASCII commands ASCII commands 

- - 

Yes Yes 

Yes Yes 

Yes Yes 

Yes Yes 

Yes Yes 

Yes Yes

v. 1.5 v. 1.3 

Yes Yes 

Yes Yes 

Yes Yes 

Yes - 

Yes Yes 

Yes Yes 

iAP1 and iAP2 iAP1 

Yes Yes 

Yes Yes 

Yes Yes 

Yes Yes 

CSR BlueLab CSR BlueLab 

Yes Yes 

Yes Yes 

Yes Yes 

Yes Yes 

Yes - 

Yes Yes

- -

15.9 x 23.9 x 2.4 mm 15.9 x 23.9 x 2.5 mm 

BLUETOOTH STACK FEATURES 
Version 2.1 + EDR / 3.0 2.1 + EDR / 3.0 2.1 + EDR / 3.0 

Integrated Bluetooth stack Yes Yes Yes 

Security Simple Pairing Yes Yes Yes 

Connections 1-7 1-7 1-7 

Host API ASCII commands 

/ HCI 

ASCII commands 

/ HCI 

ASCII commands 

/ HCI 

HCI interface UART/USB UART/USB UART/USB 

SUPPORTED PROFILES 
SPP Yes Yes Yes 

OBEX OPP Yes Yes Yes 

OBEX FTP Yes Yes Yes 

DUN Yes Yes Yes 

HID Yes Yes Yes 

A2DP - - - 

AVRCP Yes Yes Yes 

HFP v.1.6 Yes Yes Yes 

HSP Yes Yes Yes 

PBAP Yes Yes Yes 

HDP Yes Yes Yes 

MAP Yes Yes Yes 

DI Yes Yes Yes 

Apple iAP support Yes Yes Yes 

Over-the-Air configuration* Yes Yes Yes 

BGIO* Yes Yes Yes 

SOFTWARE DEVELOPMENT 

On-board applications Yes Yes Yes 

Software development 

service 
Yes Yes Yes 

SDK/IDE CSR BlueLab CSR BlueLab CSR BlueLab 

CERTIFICATIONS 

Bluetooth Yes Yes Yes 

CE Yes Yes Yes 

FCC Yes Yes Yes 

IC Yes Yes Yes 

South Korea Yes - Yes 

Japan Yes Yes Yes 

NCC (Taiwan) - - WT41-E

DIMENSIONS 

Dimensions (W x L x H) 14 x 25.6 x 2.4 mm 14.5 x 35.8 x 2.6 mm 14.5 x 35.8 x 2.6 mm 

7

B
lu

e
to

o
th

 C
la

s
s
ic

  
M

o
d

u
le

 C
o

m
p

a
r
is

o
nWT32

Class 2
Audio Module

WT12
Class 2  
Module

WT11i
Class 1  
Module

WT32i
Class 2 

Audio Module

WT41
Long Range 

Module

B
lu

e
to

o
th

 C
la

s
s
ic

  
M

o
d

u
le

 C
o

m
p

a
r
is

o
n



8

iW
R

A
P

 S
o

ft
w

a
r
e

 C
o

m
p

a
r
is

o
n

 

Ordering code AI5 AI5S AI5IAP AI5-APTX AI5S-APTX

SUPPORTED HARDWARE 

WT32i - - - - -

WT32 Yes Yes Yes Yes Yes

WT41 - - - - -

WT11i - - - - -

WT12 - - - - -

BLUETOOTH STACK FEATURES 

Version 3.0 3.0 3.0 3.0 3.0

Secure Simple Pairing Yes Yes Yes Yes Yes

Max connections 6 6 6 6 6

Host API ASCII commands ASCII commands ASCII commands ASCII commands ASCII commands

Host interfaces UART UART UART UART UART

Encryption 56/128-bits 56/128-bits 56/128-bits 56/128-bits 56/128-bits

SUPPORTED PROFILES
SPP Yes Yes Yes Yes Yes

OBEX OPP 1 Yes Yes Yes Yes Yes

OBEX FTP 
2

Yes Yes Yes Yes Yes

DUN 
3

Yes Yes Yes Yes Yes

HID4 Yes - Yes Yes -

A2DP A2DP sink A2DP source A2DP sink A2DP sink A2DP source

HFP Hands-free Hands-free AG Hands-free Hands-free Hands-free AG

HSP Headset Headset AG - Headset Headset AG

AVRCP Yes Yes Yes Yes Yes

PBAP 
5

Yes - Yes Yes -

HDP - - - - -

DI Yes Yes Yes Yes Yes

MAP 
7

Yes - Yes Yes -

Apple iAP support 
6

- - iAP1 - -

Over-the-Air configuration Yes - - - -

BGIO Yes - - - -

IEEE AGENTS (FOR HDP)
Blood pressure monitor - - - - -

Blood glucose - - - - -

Weight scale - - - - -

Pulse oximeter - - - - -

Thermometer - - - - -

AUDIO FEATURES
CVC echo cancellation - - - - -

aptX audio codec - - - Yes Yes

AAC audio codec - - - - -

mSBC (Wide-Band 

Speech)
Yes Yes Yes Yes Yes

BLUETOOTH QUALIFICATION
QDID 37931 37931 37931 37931 37931

iWRAP 5.0.2 
build 764

GENERIC

1) OPP server only 
2) FTP client only
3) DUN terminal only

4) HID device only
5) PBAP client only
6) Delivered only to Apple MFi licensees. Please contact Bluegiga support for more information.
7) MAP client only

iWRAP 5.0.2 
build 765

AUDIO 
SOURCE

iWRAP 5.0.2
build 763

iAP

iWRAP 5.0.2 
build 767 

aptX®

iWRAP 5.0.2 
build 768 

aptX® 
SOURCE



9

CVC5 AI55 AI55IAP AI6 AI6-APTX AI6IAP

- - - Yes Yes Yes

Yes - - - - -

- Yes Yes - - -

- Yes Yes - - -

- Yes Yes - - -

3.0 3.0 3.0 3.0 3.0 3.0

Yes Yes Yes Yes Yes Yes

6 7 7 6 6 6

ASCII commands ASCII commands ASCII commands ASCII commands ASCII commands ASCII commands

UART UART UART UART UART UART

56/128-bits 56/128-bits 56/128-bits 56/128-bits 56/128-bits 56/128-bits

Yes Yes Yes Yes Yes Yes

Yes Yes Yes Yes Yes Yes

Yes Yes Yes Yes Yes Yes

Yes Yes Yes Yes Yes Yes

- Yes Yes Yes Yes Yes

A2DP sink - - Yes Yes Yes

Hands-free Yes Hands-free Yes Yes Yes

Headset Yes - Yes Yes Yes

Yes - - Yes Yes Yes

Yes Yes Yes Yes Yes Yes

- Yes - Yes - -

Yes Yes Yes Yes Yes Yes

Yes Yes Yes Yes Yes Yes

- - iAP1 and iAP2 - - iAP1 and iAP2

- Yes Yes Yes Yes Yes

- Yes Yes Yes Yes Yes

- Yes - Yes - -

- Yes - Yes - -

- Yes - Yes - -

- Yes - Yes - -

- Yes - Yes - -

Yes - - - - -

- - - - Yes -

- - - Yes Yes Yes

- - - Yes Yes Yes

37931 37931 37931 56758 56758 56758

iWRAP 5.0.2 
build 766 

CVC5

iWRAP 5.5.0  
build 891

GENERIC

iWRAP 5.5.0  
build 893

iAP

iWRAP 6.0.0  
build 891

GENERIC

iWRAP 6.0.0  
build 892

aptX®

iWRAP 6.0.0  
build 893

iAP

iW
R

A
P

 S
o

ft
w

a
r
e

 C
o

m
p

a
r
is

o
n



10

 * Line-of-sight unobstructed range measured between two identical modules

WI-FI FEATURES 

Version 802.11 b/g/n 802.11 b/g/n 

Frequency 2.4GHz 2.4GHz 

Max. symbol rate 72.2Mbps 72.2Mbps 

Soft AP mode Yes (8 clients) Yes (5 clients)

RADIO PERFORMANCE 

Typical TX power +17 dBm +17 dBm 

Typical RX sensitivity -97 dBm -97 dBm 

Typical range * 300-500m 300-500m 

ANTENNA OPTIONS 

Integrated chip Yes Yes 

U.FL Yes Yes 

HOST INTERFACES 

SDIO Yes No 

CSPI Yes No 

UART No Yes 

USB No Yes 

SPI No Yes 

PERIPHERAL INTERFACES 

SPI - up to 2

UART - up to 4

USB - 1

Ethernet RMII - 1 

I2C - up to 2

GPIO 6 up to 38

AIO - up to 10

MICROCONTROLLER 

Architecture - MIPS 4K 

MHz - 80 Mhz 

RAM - 128 kB (<64 kB free) 

Flash - 512 kB (<256 kB free) 

AVG. CURRENT CONSUMPTION 

TX (17dBm, 802.11g) 192 mA 142 mA 

RX 88 mA 127 mA 

Idle, Associated to an AP 1.7mA 6.1mA

Sleep 70 uA 62 uA 

W
i-

F
i 
 M

o
d

u
le

 C
o

m
p

a
r
is

o
n WF111

Wi-Fi Module
WF121

Wi-Fi Module

11



OPERATING VOLTAGE 

Operating voltage 1.8V and 3.3V 2.7V - 3.6V 

PHYSICAL CONNECTION  

 Type castellated edges castellated edges

TCP/IP STACK FEATURES 

Integrated TCP/IP stack - Yes 

DHCP - Yes 

DNS - Yes 

TCP client - Yes 

UDP client - Yes 

TCP server - Yes 

UDP server - Yes 

ICMP server - Yes 

HTTP server - Yes

DHCP server - Yes

DNS server - Yes

HOST API 

BGAPITM binary protocol - Yes 

BGLibTM host library - Yes 

OS DRIVERS 

Linux Yes Not needed 

Windows No Not needed 

Android Yes Not needed 

SOFTWARE DEVELOPMENT 

On-board applications - Yes 

BGScriptTM support - Yes 

Native C development - No

Software dev service - Yes 

SDK - Bluegiga SDK 

CERTIFICATIONS 

CE Yes Yes 

FCC Yes Yes 

IC Yes Yes 

South Korea Yes Yes 

Japan Yes Yes 

DIMENSIONS 

Dimensions (W x L x H) 12 x 19 x 2.1 mm 15.4 x 26.2 x 2.1 mm

WF111
Wi-Fi Module

WF121
Wi-Fi Module

11

W
i-

F
i 
 M

o
d

u
le

 C
o

m
p

a
r
is

o
n



Head office

Bluegiga Technologies Oy

Sinikalliontie 5A

FI-02630 Espoo

Finland

Phone: +358 9 435 50 60

Fax: +358 9 435 50 66 0 

USA office

Bluegiga Technologies Inc.

3235 Satellite Boulevard, 

Building 400, Suite 300, 

Duluth, GA 30096

United States

Phone: +1 770 291 2181

Fax: +1 770 291 2183

Hong Kong office

Bluegiga Technologies Ltd.

Elite Business Center

15/F, Millenium City 3

370 Kwun Tong Road

Kwun Tong

Kowloon

Hong Kong

Shanghai office

Phone: +852 31078911

Shanghai Office

Room 401, #2 Building

690 Bi Bo Road,

Shanghai, 201203, China

Phone: +86 21 6104 2277

www.bluegiga.com 

Bluegiga Technologies takes no responsibility for any mistakes 
that might appear in this document. Information subject to 

change. Bluegiga reserves the right to change devices, software 
or specifications detailed here at any time without notice, and 

does not make any commitment to update the information 
contained here. 

Bluegiga products are not authorized for any use as critical 
components in life support devices or systems. The Bluetooth 
trademark and logo are registered trademarks and are owned 

by the Bluetooth SIG, Inc. Wi-Fi is a Registered Trademark of the 
Wi-Fi alliance. The Bluetooth SIG, Inc., U.S.A.

© Bluegiga Technologies

Information subject to change.

08
/2

01
4


	CONFIGURATION_GUIDE.pdf
	Version History
	Introduction
	Project Configuration File
	<device>
	<gatt>
	<hardware>
	<config>
	<script>
	<usb_main>
	<image>
	<ota>
	<boot>
	Examples

	Hardware Configuration File (hardware.xml)
	<sleeposc>
	<script>
	<slow_clock>
	<lock_debug>
	<sleep>
	<wakeup_pin>
	<host_wakeup_pin>
	<txpower>
	<pmux>
	<port>
	<usb>
	<usart>
	<timer_ticks>
	<timer>
	<otaboot>
	Endpoints
	Examples

	Application Configuration File (config.xml)
	<connections>
	<defrag>
	<manual_confirm>
	<script_timeout>
	<throughput>
	<passkey>
	<user_data>
	<dfu>
	Examples





